ftcs格式 matlab,计算流体力学_对流方程_有限差分法_Lax格式_迎风格式_FTCS格式(8页)-原创力文档...

有限差分法数值求解一维伯格斯方程

作者:潭花林

引言

本文利用有限差分法计算了一维伯格斯方程的初边值问题。采用FTCS格式,并深入讨论了它的相容性、收敛性与稳定。有限差分法在计算流体力学、数值传热学中都有众多的应用,而且可以用于高维情形。所有问题都是采用matlab编程计算。本文只是一个简单的一维问题的算例。

关键词:计算流体力学,有限差分法,一维对流方程

题目

用计算机求对流方程的初值问题

的数值解(由于对流方程的计算结果只依赖与上游,只需要给出上有的边界条件就可以了)。

(1)分别用C格式,Lax格式,FTCS格式在 ,两种情况下计算。

(2)计算范围为,取,计算80个时间步长。

(3)写出计算报告,内容为

(I)计算课题

(II)计算框图

(III)计算程序

(IV)计算结果,时的,图

(V)体会

计算原理

迎风格式

内点采用如下差分格式

初值为

边界条件为

稳定性:

差分格式的稳定性:误差方程与差分方程相同

设误差为,则

放大因子

所以

为使,应有

对于本问题,初值和边界条件并不影响稳定性和收敛性问题。

根据Lax等价定理,对于适定的处置问题,只要差分格式相容,稳定的就是收敛的。

Lax格式

内点采用如下差分格式

初值为

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
导热方程是一个描述物体内部热传递过程的偏微分方程。对于混合初边问题,我们需要考虑物体的初始温度分布和物体表面的热边界条件。其中,ftcs格式是一种数值解法,可以通过有限差分方法离散化空间和时间,从而得到原始偏微分方程的数值近似解。 首先,我们可以将导热方程表示为: ``` du/dt = k * d^2u/dx^2 ``` 其中,u是温度,t是时间,x是空间坐标,k是导热系数。 然后,我们将空间和时间分别离散化,使用坐标格点 u(i,j) 来表示 x=i*dx,t=j*dt 时刻的温度,根据ftcs格式可以得到如下的差分方程: ``` u(i, j+1) = u(i,j) + k*(dt/dx^2)*[ u(i+1,j) - 2*u(i,j) + u(i-1,j) ] ``` 此时我们的任务变为对初始条件和边界条件进行离散化。例如,初始温度分布可以表示为 u(i,0),热边界条件可以表示为在物体表面位置 j=0 (底部表面) 和 j=n (顶部表面) 时的温度值。这些条件可以以类似于下面的方式进行表示: ``` u(i,0) = f(i) # 初始温度分布 u(i,n) = g(i) # 顶部表面热边界条件 u(0,j) = h1(j) # 左侧表面热边界条件 u(m,j) = h2(j) # 右侧表面热边界条件 ``` 其中,m表示空间格点数,n表示时间步数,f(i)、g(i)、h1(j)和h2(j)是分别对应于初始温度分布、以及物体表面各个位置的热边界条件的函数。 最后,我们可以通过迭代计算 u(i,j) 的值,从而得到在不同时间步的温度分布。需要注意,在计算过程中需要使用适当的边界条件以避免出现数值不稳定的情况。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值