有限差分法数值求解一维伯格斯方程
作者:潭花林
引言
本文利用有限差分法计算了一维伯格斯方程的初边值问题。采用FTCS格式,并深入讨论了它的相容性、收敛性与稳定。有限差分法在计算流体力学、数值传热学中都有众多的应用,而且可以用于高维情形。所有问题都是采用matlab编程计算。本文只是一个简单的一维问题的算例。
关键词:计算流体力学,有限差分法,一维对流方程
题目
用计算机求对流方程的初值问题
的数值解(由于对流方程的计算结果只依赖与上游,只需要给出上有的边界条件就可以了)。
(1)分别用C格式,Lax格式,FTCS格式在 ,两种情况下计算。
(2)计算范围为,取,计算80个时间步长。
(3)写出计算报告,内容为
(I)计算课题
(II)计算框图
(III)计算程序
(IV)计算结果,时的,图
(V)体会
计算原理
迎风格式
内点采用如下差分格式
初值为
边界条件为
稳定性:
差分格式的稳定性:误差方程与差分方程相同
设误差为,则
放大因子
所以
为使,应有
对于本问题,初值和边界条件并不影响稳定性和收敛性问题。
根据Lax等价定理,对于适定的处置问题,只要差分格式相容,稳定的就是收敛的。
Lax格式
内点采用如下差分格式
初值为