matlab怎样绘制零度根轨迹,自动控制原理实验五 利用MATLAB绘制系统根轨迹[稻谷书苑]...

《自动控制原理实验五 利用MATLAB绘制系统根轨迹[稻谷书苑]》由会员分享,可在线阅读,更多相关《自动控制原理实验五 利用MATLAB绘制系统根轨迹[稻谷书苑](7页珍藏版)》请在人人文库网上搜索。

1、实验五 利用MATLAB绘制系统根轨迹一、实验目的(1)熟练掌握使用MATLAB绘制控制系统零极点图和根轨迹图的方法;(2)熟练使用根轨迹设计工具SISO;(2)学会分析控制系统根轨迹的一般规律;(3)利用根轨迹图进行系统性能分析;(4)研究闭环零、极点对系统性能的影响。二、实验原理及内容1、根轨迹与稳定性当系统开环增益从变化时,若根轨迹不会越过虚轴进入s右半平面,那么系统对所有的K值都是稳定的;若根轨迹越过虚轴进入s右半平面,那么根轨迹与虚轴交点处的K值,就是临界开环增益。应用根轨迹法,可以迅速确定系统在某一开环增益或某一参数下的闭环零、极点位置,从而得到相应的闭环传递函数。2、根轨迹与系统。

2、性能的定性分析1)稳定性。如果闭环极点全部位于s左半平面,则系统一定是稳定的,即稳定性只与闭环极点的位置有关,而与闭环零点位置无关。2)运动形式。如果闭环系统无零点,且闭环极点为实数极点,则时间响应一定是单调的;如果闭环极点均为复数极点,则时间响应一般是振荡的。3)超调量。超调量主要取决于闭环复数主导极点的衰减率,并与其它闭环零、极点接近坐标原点的程度有关。4)调节时间。调节时间主要取决于最靠近虚轴的闭环复数极点的实部绝对值;如果实数极点距虚轴最近,并且它附近没有实数零点,则调节时间主要取决于该实数极点的模值。5)实数零、极点影响。零点减小闭环系统的阻尼,从而使系统的峰值时间提前,超调量增大;。

3、极点增大闭环系统的阻尼,使系统的峰值时间滞后,超调量减小。而且这种影响将其接近坐标原点的程度而加强。【自我实践5-1】在实验内容(2)中控制系统的根轨迹上分区段取点,构造闭环系统传递函数,分别绘制其对应系统的阶跃响应曲线,并比较分析。1:阻尼比=0.00196,k=5.942:阻尼比=0.246,k=2.163:阻尼比=0.669 k=0.6694:阻尼比=1.0,k=0,3855:阻尼比=1.2(无此阻尼,取-0.2),k=24.5将数据填入实验数据记录表中。阻尼比闭环极点p开环增益K自然频率wn超调量s%调节时间tsx=0.00196-0.00277+1.41i5.941.4199.41e。

4、+03x=0.246-0.226+0.892i2.160.9245.116.7x=0.694-0.379+0.393i0.6690.5464.8312.6x=1-0.423+9.01e-09i0.3850.423015.6x=-0.20.51+2.42i24.52.471943、基于SISO设计工具的系统根轨迹设计用根轨迹法进行系统校正过程中,分析补偿增益和附加实数(或复数)零极点之间匹配的规律。在MATLAB命令窗口中输入命令【rltool】,然后回车,或者输入【rltool(sys)】函数命令,就可打开系统根轨迹的图形界面。【综合实践】绘制180根轨迹。请绘制: (1);(2);(3)的根。

5、轨迹,其中T1=0.2,T2=2,a=0.1,p=1,分析附加零点、极点对根轨迹的影响;固定T值,分别改变a和p的值看附加零、极点位置的变化对根轨迹形状的影响。将结果填入下表。传递函数根轨迹图零、极点分布的影响分析1、 添加开环零点使得系统根轨迹主要分支左移;添加开环极点使得分支右移;2、 通过调节开环极点的位置可以得出结论:开环极点离虚轴越近,极点作用越强根轨迹向右的偏移越多;3、 通过调节开环零点的位置可以得出结论:开环零点离虚轴越近,零点作用越强,根轨迹向左的偏移越多【综合实践】0根轨迹的绘制及参量分析。分别绘制(1);(2)的0根轨迹,比较其与180根轨迹不同。其中T1=0.2,T2=。

6、2,a=0.1,p=1。(1)0根轨迹: 180根轨迹:(2)0根轨迹: 180根轨迹:对于上面的180和0根轨迹,求系统临界稳定时的Kg值,求Kg=5时系统极点的位置(在根轨迹上的小红块上点击鼠标右键显示极点坐标值,该小红块可以用鼠标拖动);分析此时系统的阶跃动态响应和Bode图。临界稳定Kg值Kg=5.01闭环系统零极点阶跃响应曲线分析说明(与180比较)传递函数(1)0根轨迹0零点:-10极点:-5,-0.5曲线对称零度阶跃响应刚好是180度响应的相反数180根轨迹0零点:-10极点:-5,-0.5传递函数(2)0根轨迹0零点:无极点:-6.3-0.11+2.6i-0.11-2.6i曲线。

7、对称零度阶跃响应刚好是180度响应的相反数180根轨迹3.2零点:无极点:-6.3-0.11+2.6i-0.11-2.6i(注:Kg可取其它值,再求出对应的闭环零、极点响应曲线)伯德图的绘制:传递函数伯德图;三、思考题1) 附加开环零点总对系统的稳定性是否有利?不一定,引入负的零点会使系统更加稳定,但是引入一个负的零点可能会破坏系统的稳定性2) 附加开环极点总对系统的稳定性是否不利?不一定,引入负的极点会使系统更加稳定,但是引入一个负的极点可能会破坏系统的稳定性3) 对实际系统,如何通过附加零点和极点来改善系统性能?举例说明。对传递函数;通过增加一阶惯性环节来增加系统的极点,通过增加一阶微分环。

8、节来增加系统零点,即可增加系统的稳定性。4) 如何绘制系统等效根轨迹?绘制根轨迹主要通过引入开环传递函数G等效,在G等效将参数变量置于常规根轨迹所对应的开环传递函数G中K的位置上,然后按照常规根轨迹的作图法进行作图。四、实验能力要求(1)熟练掌握使用MATLAB绘制控制系统零极点图和根轨迹图的方法。(2)通过根轨迹图能够确定有用的参数,比如:分离点坐标及相应参数、临界开环增益点及相应参数、任意一点对应的开环增益K值和闭环极点。(3)利用根轨迹图进行系统性能分析,以阻尼比为依据分区段比较不同闭环极点对应系统性能的变化。能够确定系统稳定的开环增益范围。(4)了解闭环零、极点对系统性能的影响。(5)学会使用根轨迹设计工具校验系统的动态性能和稳态性能。7教辅工具b。

表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
<p> 需要学习Windows系统YOLOv4的同学请前往《Windows版YOLOv4目标检测实战:原理与源码解析》, </p> <p> 课程链接 https://edu.csdn.net/course/detail/29865 </p> <h3> <span style="color:#3598db;">【为什么要学习这门课】</span> </h3> <p> <span>Linux</span>创始人<span>Linus Torvalds</span>有一句名言:<span>Talk is cheap. Show me the code. </span><strong><span style="color:#ba372a;">冗谈不够,放码过来!</span></strong> </p> <p> <span> </span>代码阅读是从基础到提高的必由之路。尤其对深度学习,许多框架隐藏了神经网络底层的实现,只能在上层调包使用,对其内部原理很难认识清晰,不利于进一步优化和创新。 </p> <p> YOLOv4是最近推出的基于深度学习的端到端实时目标检测方法。 </p> <p> YOLOv4的实现darknet是使用C语言开发的轻型开源深度学习框架,依赖少,可移植性好,可以作为很好的代码阅读案例,让我们深入探究其实现原理。 </p> <h3> <span style="color:#3598db;">【课程内容与收获】</span> </h3> <p> 本课程将解析YOLOv4的实现原理和源码,具体内容包括: </p> <p> - YOLOv4目标检测原理<br /> - 神经网络及darknet的C语言实现,尤其是反向传播的梯度求解和误差计算<br /> - 代码阅读工具及方法<br /> - 深度学习计算的利器:BLAS和GEMM<br /> - GPU的CUDA编程方法及在darknet的应用<br /> - YOLOv4的程序流程 </p> <p> - YOLOv4各层及关键技术的源码解析 </p> <p> 本课程将提供注释后的darknet的源码程序文件。 </p> <h3> <strong><span style="color:#3598db;">【相关课程】</span></strong> </h3> <p> 除本课程《YOLOv4目标检测:原理与源码解析》外,本人推出了有关YOLOv4目标检测的系列课程,包括: </p> <p> 《YOLOv4目标检测实战:训练自己的数据集》 </p> <p> 《YOLOv4-tiny目标检测实战:训练自己的数据集》 </p> <p> 《YOLOv4目标检测实战:人脸口罩佩戴检测》<br /> 《YOLOv4目标检测实战:中国交通标志识别》 </p> <p> 建议先学习一门YOLOv4实战课程,对YOLOv4的使用方法了解以后再学习本课程。 </p> <h3> <span style="color:#3598db;">【YOLOv4网络模型架构图】</span> </h3> <p> 下图由白勇老师绘制 </p> <p> <img alt="" src="https://img-bss.csdnimg.cn/202006291526195469.jpg" /> </p> <p>   </p> <p> <img alt="" src="https://img-bss.csdnimg.cn/202007011518185782.jpg" /> </p>
©️2020 CSDN 皮肤主题: 深蓝海洋 设计师:CSDN官方博客 返回首页