woo产品页面描述追加内容_免费游戏+免费内容 ?一个都不会错过? 没领的赶紧领 没点的赶紧点_电脑游戏...

Steam平台游戏更新:《SNOW》转为收费,《怪物猎人世界》推出免费组合
Steam平台上,《SNOW》由免费变为收费游戏,已入库的玩家将升级到终极版。另一方面,《怪物猎人世界》发布了「全部免费组合」DLC,让已购买玩家可一次性入库所有免费内容,方便新玩家入坑。《SNOW》被评价为低配版steep,但缺少中文;《怪物猎人世界》的免费内容包括多种发型、动作和贴图等。

2020-11-12 17:05:561点赞8收藏0评论

第一款:《SNOW》

今日,看到滑雪游戏《SNOW》在Steam平台上入库,翻看了下评论貌似本体以前是免费的(可我看有人说他曾经花钱买的),只DLC付费来着,后来还进过TB慈善包。

这次入库又要收费了,根据官方公告来看,就是号前免费/购买入库的玩家直接升级到终极版,从之后变成付费游戏,且终极版国区原价40,目前折后26。

4e8e3f6cd0da21a99c9c6cedceb3969b.png

1e325a17a9c9fbf18e87c12c8a2d1181.png

看来免费的游戏也需要及时入库,万一哪天人家就变成了收费的呢~ 多少人在默默喊血亏?

游戏地址

说说这款游戏,画面和BGM都很清新,低配版steep,滑雪爱好者可以试试这个游戏!但是游戏控制对键盘玩家来说是很难受的,对于我来说最要狗命的是没中文。

6d118f70daa4427e7f701b7aa4bb705a.png


第二款:《怪物猎人世界》

也是今日,《怪物猎人世界》推出了「全部免费组合」,其实就是将《怪物猎人世界》过去推出的免费內容,现在只要点一次就可以全部入库。目前,本款DLC「全部免费组合」商店页面已经开放。

只要是已经购买过《怪物猎人世界》本体,就可以入库本款DLC,但部分內容需要购买了《怪物猎人世界:冰原》才能生效。

DLC「全部免费组合」地址

如此一来,倒是方便了大家以后不用点点点,哈哈哈已经点完的就算了,后面再来入坑的方便了!

51d1cb728efbca2f91f96f8ea601922d.png

关于此内容:

可以一次过下载所有免费内容得方便组合。

此内容会为 Monster Hunter: World 与 Monster Hunter World: Iceborne 追加以下的游戏内容。

追加动作包1

追加发型「物资班队长」

追加发型「调查班队长」

追加发型「接待员」

追加发型「大团长」

免费追加贴图套装「猎人交流套装」

免费追加动作「一起去狩猎吧!」

MHW:I 怪物模型「大贼龙」

追加动作套装包「兴奋组合」

MHW:I 怪物模型「【大感谢之宴】特别模型」

追加发型「阳光的推荐组员」

追加发型「研究班队长」

追加发型「第三期团的期团长」

追加发型「总司令」

追加发型「原野大师」

追加发型「好胜的推荐组员」

追加发型「龙人族的猎人」

追加饰物「迷你超级8·1P」

追加饰物「迷你超级8·2P」

※必须拥有 Monster Hunter World: Iceborne 才可利用其中一部分的追加内容。

内容概要:本文围绕基于机器学习的网络入侵检测展开研究,提出采用随机森林(Random Forest, RF)模型实现对网络流量中异常行为的高效识别。系统以KDD 99公开数据集为基础,通过数据预处理、特征提取(如包长、协议类型、源IP、目标端口等)、模型训练与优化等步骤,构建随机森林分类模型。研究强调该算法在检测准确率、泛化能力及抗噪性方面的优势,测试结果显示模型准确率达98.65%,具备低误报率和高实时性。系统还集成Flask框架与Vue技术实现前后端交互及可视化展示,支持攻击类型统计、地理分布分析等功能,并通过单元测试、性能测试和安全测试验证系统稳定性与可靠性。; 适合人群:具备一定机器学习基础和Python编程能力的本科及以上学生、网络安全研究人员或初级开发人员。; 使用场景及目标:①应用于高校科研或毕业设计,深入理解机器学习在网络入侵检测中的实际应用;②为中小型组织提供低成本、高效的入侵检测解决方案原型;③学习如何将机器学习模型与Web系统集成,实现从数据处理到可视化展示的完整流程。; 阅读建议:建议结合代码实践,重关注数据预处理、特征工程与随机森林模型调优部分,同时可拓展对比其他算法(如SVM、神经网络)在相同数据集上的表现,以深化对模型选型的理解。
内容概要:本文详细介绍了一个基于贝叶斯优化算法(BO)优化Transformer-BiLSTM组合模型的多变量时间序列预测项目,涵盖从数据生成、模型构建、超参数调优到GUI界面设计的完整流程。项目通过融合Transformer的全局注意力机制与BiLSTM的局部时序建模能力,实现对复杂多变量序列的高精度预测,并引入贝叶斯优化自动搜索最优超参数,显著提升模型性能与开发效率。同时,系统集成了数据预处理、模型训练、可视化分析与可解释性评估模块,支持多种行业应用场景。; 适合人群:具备一定Python编程基础和深度学习知识的研发人员、数据科学家及高校研究生,熟悉PyTorch框架和时间序列分析者更佳;适合从事智能预测、工业监控、金融风控等相关域的技术人员。; 使用场景及目标:①应用于电力负荷、交通流量、金融市场、医疗健康等多变量时间序列预测任务;②解决传统模型精度不足与调参困难问题,提升预测准确性与工程自动化水平;③通过GUI界面实现便捷交互,支持非专业用户进行数据上传、模型预测与结果可视化;④为科研与工业项目提供可复用、可扩展的标准化解决方案。; 阅读建议:建议读者结合文档中的代码示例与目录结构逐步实践,重关注Transformer与BiLSTM的融合机制、贝叶斯优化的实现逻辑以及GUI的集成方式。在学习过程中应动手运行程序,调试关键模块(如注意力权重可视化、超参数搜索),并尝试在自有数据上迁移应用,以深入掌握模型设计思想与工程落地要
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值