mysql8.0和5.7区别_一元二次方程实际应用题,五类易混淆问题,你有没有想明白区别...

一元二次方程实际应用题中有很多类别,比如常见的有:增长率问题、数字问题、利润问题、几何图形问题等等,其中有些问题很容易混淆,你有没有想明白它们之间的区别呢?

4a0b408b6741709b02ec5c757c05e04d.png

传染问题

例题1:有一人患了流感,经过两轮传染后共有64人患了流感.求每轮传染中平均一个人传染了多少个人?

解析:设每轮传染中平均一个人传染了x个人,根据题意可知,在第一轮,有x个人被传染,此时,共有(1+x)人患了流感;到了第二轮,患流感的(1+x)人作为“传染源”,每个人又传染给了x个人,这样,在第二轮中新增加的患了流感的人有x(1+x)人,根据等量关系可列一元二次方程解答.

解:设每轮传染中平均一个人传染了x个人,

由题意得:1+x+x(1+x)=64,

解得:x1=7,x2=-9(不合题意,舍去).

答:每轮传染中平均一个人传染了7个人.

树干分支问题

例题2:某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出多少小分支?

分析:假设主干长出x个支干,每个支干又长出x个小分支。本题和传染问题的区别在于,第二次主干没有长长新的支干,而传染问题中第一个人在第二轮感染中还会继续感染。即主干为1,长出x个支干,每个支干又长出x个小分支,那么此时一共有1+x+x2个。

解:设每个支干长出x小分支,依题意得

1+x+x2=91

解得:X1=9 x2=-10(舍去)

答:每个支干长出9小分支。

f0baa79440948f4ad2024f4fc37e4e15.png

送礼物问题

例题3:在一次同学聚会中,每两名同学之间都互送了一件礼物,所有同学共送了90件礼物,共有多少名同学参加了这次聚会?

分析:假设一共有x名同学,那么要给剩下的x-1名同学都送一件礼物,因此一共送了x(x-1)件礼物。

解:设共有x名同学参加了聚会.

依题意得: x(x-1)=90.

x2-x-90=0.

解的x1=-9(舍去),x2=10.

答:共有10人参加了聚会.

握手问题

例题4:参加一次聚会的每两个人都握了一次手,所有人共握手10次,有多少人参加聚会?

分析:假设一共有x名同学,那么要与剩下的x-1名同学都要握手。那么,握手问题与送礼物问题有什么区别呢?a送b礼物,b送a礼物算两个事件,但是a与b握手,b与a握手,只能算一个事件。

解:设有x人参加聚会,

根据题意得:x(x-1)=2×10,

解得:x1=5,x2=-4(舍去)

答:共有5人参加了聚会.

比赛问题

(1)单循环问题

例题5:为增强学生身体素质,提高学生足球运动竞技水平,某市开展“希望杯”足球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排21场比赛,应邀请多少个球队参赛?

分析:设一共有x个球队,每两队之间赛一场,那么要与剩下的(x-1)个球队比赛,但是同样的a与b比赛、b与a比赛只能算一场比赛。

解:设应该邀请x个球队参加,

由题意得:x(x-1)=21×2,

解得:x1=7,x2=-6(舍去),

答:应邀请7个球队参赛.

a9f0cccc36bf48c94639e092f5bfb83b.png

(2)双循环问题

例题6:为迎接元旦活跃校园气氛,我校组织班际三人篮球赛,比赛采用双循环赛制(即参加球赛的每两队之间都进行两次比赛),共要比赛56场,则有多少个班级参加比赛?

分析:每个队都要与其余队比赛一场,2队之间要赛2场.等量关系为:队的个数×(队的个数-1)=56。

解:设有x队参加比赛.

依题意得:x(x-1)=56,

解得:x=8,x=-7(不合题意,舍去).

答:有8个班级参加比赛.

一元二次方程实际应用题,五类易混淆问题,你有没有想明白区别呢?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值