hyperion高光谱参数_学术成果 | 基于高光谱数据通过多种神经网络的自适应选择计算城市水体参数模型...

324d72a15899d328dc8a4f82eee563fe.png

01

内容导读

环保问题吸引了社会各界越来越多的关注,水环保是其中热门的话题之一。当今世界工业快速发展,而工厂产生的废水、废料等常常被排入河流,造成不同程度的水污染问题。

目前人们主要采用人工水体采样、逐样本检验的方式对河流的污染状况进行评估,还没有一种智能化、实时、动态的定量检测水体污染物浓度的方式。尽管人工采集水体样本进行化学检测的精度较高,但是其采集和化验过程耗时较长,同时由于时间和人力成本问题,也不能进行点对点的样本采集和检测。

采用无人机代替人工进行数据采集,极大地减少了人力成本,同时也可以实时动态地进行水体污染物浓度的定量检测。光谱采集仪器从另一个角度获取了水体污染物的物理特征,可用于污染物浓度的建模分析。无人机载高光谱影像采集仪的使用能使得无人机获得更多的水体污染物反射率信息,其采集信息的覆盖范围也远大于普通光谱采集仪器。无人机高光谱和深度学习的引入使得原本耗时耗力的水体污染物浓度检测变得高效便捷,其精度与人工化学检测得到的水体污染物浓度相差较小,还可以进行大范围的水体污染物浓度检测,摆脱了以往人工检测的地域和范围限制。

02

方法

本方法的目标,是通过无人机载高光谱影像采集仪获取的水体反射率信息、地面采集的水体污染物浓度信息以及地面高光谱信息,建立机载高光谱信息和地面污染物浓度的对应模型。其中地面高光谱数据和水体污染物浓度信息可以建立地面水质参数预测模型,而无人机载高光谱信息和地面高光谱信息可以建立天空—地面转化模型,从而可以将无人机载高光谱信息转化为接近地面高光谱信息的数据。我们通过天空—地面转化模型减少了介质干扰,这样就可以用无人机进行大面积水体污染物浓度预测。

基于深度神经网络模型,通过设定数学和统计指标 (MPAE, R², RMSE, F-statistic),建立信息反馈机制(Feedback machine),通过模型的迭代训练,选择出最优的网络模型结构。

8d49c17525b2f434d4d4822514fdca76.png

图1 SSNN网络结构

同时,在输入数据之前进行输入数据的特征工程 (Feature Engineering),进行降噪,去相关性,数据压缩,提取最大方差解释信息 (max explained variance) 的特征。

688c67aa9f7893816801515725a86c8e.png

Lwater, λLref, λ 分别是同光照下的水体辐射值和标准参考板辐射,ρref,λ是已知标准参考板波长为λ处的反射率。

5106f7d62d37608e80b2157605cfee6f.png

eba9e8c3d1a6ec3f935cf11d3b1243af.png

在公式(2)中, 最左端矩阵是经过去噪后的原始波段形成的反射率矩阵,最右端向量是特征工程最终得到的反射特征。公式(3)中,aλ,bλ,以及cλ是在波长λ处的参数,ρUAV, λ是在波长λ处的无人机高光谱反射率, ρASD,λ是波长λ处的地面高光谱反射率。

由于水质参数的物理特征性(即对不同波段的反射率不同),不同的水质参数会对应不同的网络层级结构。不同模型选择网络结构(激活函数,隐藏层数,隐藏层节点数等等),主要根据公式(4)-(6)的参数选择出最优结构,而其它统计参数将作为其误差的主要参照标准。

f1fafac8dda1c085452e16a23b7ccacd.png

e74043b3fc0eba07677e20751b5a3202.png

03

建模

基于深度神经网络,建立对应不同水质参数的网络结构;同时建立无人机载高光谱数据到地面数据的转化模型。其中天空—地面高光谱数据的转化模型是通过同时间采集的经纬度坐标一致的无人机载高光谱数据和地面手持ASD采集的高光谱数据进行不同波段的多元回归得到的。

将输入模型的数据进行特征工程处理,选取有效特征波长,进行污染物浓度计算。其特征工程主要采用输入波段的降噪、去相关性以及最大方差解释的特征提取等等。

最后,使用ArcGIS将计算结果绘制成专题图。

ab7682532e6ac7ab2ca1e6b80e27bfa1.png

图2 SSNN计算流程图

04

应用实例

使用中山市石崎河板芙大桥附近水域作为重点研究区域,使用SSNN算法进行水体污染物浓度变化趋势的计算。计算范围约为0.5平方公里,无人机载高光谱仪数据采集分辨率为40cm*40cm。通过天空—地面反射率转化模型,将无人机采集的高光谱数据转化为接近地面高光谱的反射率数据,进而输入SSNN模型进行点对点的计算,将计算结果绘制成彩色图像,便可以看出水体污染物浓度的变化趋势。

b03d640a73983c172a3137303bc8c191.png

图3 水质参数浓度变化趋势图. (a) 浑浊度(单位:NTU). (b) 化学需氧量(单位:mg/L). (c) 生化需氧量(单位:mg/L). (d) 磷(单位:mg/L). (e) 氮(单位:mg/L). (f) 叶绿素a (单位:μg/L).

05

总结

基于深度神经网络的自适应选择的水质参数计算模型,既可以减少人力和时间成本,又可以进行大面积的水质参数实时定量监测,同时其计算精度又与实际水体污染物检测浓度相近。该方法目前并不能完全消除空气中的介质干扰,同时没有考虑到其他地区无人机飞行高度的限制,这些是需要进一步研究的问题。

参考文献

Zhang, Y.; Wu, L.; Ren, H.; Liu, Y.; Zheng, Y.; Liu, Y.; Dong, J. Mapping Water Quality Parameters in Urban Rivers from Hyperspectral Images Using a New Self-Adapting Selection of Multiple Artificial Neural Networks. Remote Sens. 2020, 12, 336.

原文链接:学术成果 | 基于高光谱数据通过多种神经网络的自适应选择计算城市水体参数模型

springboot052基于Springboot+Vue旅游管理系统毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值