lstm中look_back的大小选择_基于时空关联度加权的LSTM短时交通速度预测

本文提出了一种基于时空关联度加权的LSTM模型用于短时交通速度预测。通过综合动态时间规整(SDTW)和路段邻接关系,设计了时空关联度度量方法,对速度历史观测值加权,利用LSTM进行预测。实验显示,该模型比ARIMA、SVR和传统LSTM模型预测精度更高。
摘要由CSDN通过智能技术生成

作 者 信 息

刘易诗1,关雪峰1,2,吴华意1,2,曹 军1,张 娜1

(1. 武汉大学 测绘遥感信息工程国家重点实验室,湖北 武汉 430079;2. 地球空间信息技术协同创新中心,湖北 武汉 430079)

【摘要】提出一种基于时空关联度加权的长短期记忆网络(Long Short-Term Memory,LSTM)短时交通速度预测模型。该模型结合综合动态时间规整(Summation Dynamic Time Warping,SDTW)和拓扑邻接关系设计了一种路段速度序列之间时空关联程度的度量方法,然后基于该度量值对路段速度历史观测值进行加权,进而使用LSTM从加权观测序列中提取路段速度的时空变化特征,实现对短时交通速度的预测。实验表明,交通速度预测模型预测结果相比传统的ARIMA模型、SVR模型以及LSTM模型均有提升,实现了更高精度的速度预测。

【关键词】交通速度预测;时空关联度;动态时间规整;深度学习;长短期记忆网络

【中图分类号】TP311.12 【文献标识码】A 【文章编号】1672-1586(2020)01-0041-07

引文格式:刘易诗,关雪峰,吴华意,等. 基于时空关联度加权的LSTM短时交通速度预测[J].地理信息世界,2020,27(1):41-47.

正文

0 引 言

为了解决道路拥堵、事故频发等交通问题,随着车载GPS的普及和交通传感器精度的提高,交通速度(指路段车辆通行速度)作为反映道路交通状态的核心要素,逐渐成为当前交通预测的重点内容之一。由于车辆通行速度随时间和路段不同而波动,如何准确地挖掘交通速度在时间和空间上的特点,成为交通速度预测的关键。

传统基于数据驱动的交通预测方法主要分为两类:基于统计分析的预测方法和一般机器学习方法。统计分析的预测方法如卡尔曼滤波(Kalman Filtering,KF)、自回归滑动平均法(Auto-Regressive Integrated Moving Average,ARIMA)等,比较依赖先验知识,不能很好地挖掘出交通数据本身的信息;一般机器学习方法如k最邻近回归(k-Nearest Neighbors,KNN)、支持向量回归(Support Vector Regression,SVR),虽然信息挖掘能力有所加强,但结构层次单一,缺乏深层特征提取能力。由于深度学习方法具有获取深层特征的能力,许多深度学习模型开始被应用到交通速度预测中。如文献[7]提出了一种时间序列模型和人工神经网络相结合的方法(Time Series-Artificial Neural Network,TS-ANN)分别对实时速度数据和历史速度数据建模预测;文献[8]根据路段平均速度的时空分布特性,设计了基于堆叠自编码器(Stacked Auto-Encoder, SAE)的短时平均速度预测模型;文献[9]结合受限玻尔兹曼机(Restricted Boltzmann Machine,RBM)与循环神经网络(Recurrent Neural Network,RNN)针对宁波的出租车数据进行了预测;文献[10]构建道路的速度-时间矩阵,转化为图像输入到卷积神经网络(Convolutional Neural Network,CNN)中进行特征学习;文献[11]使用微波探测器数据,通过长短期记忆神经网络(Long Short-Term Memory Neural Network,LSTM-NN)来学习交通速度序列的长时序依赖特征;为了获取交通数据在时间上的反向依赖特征,文献[12]使用了双向LSTM(Bi-directional LSTM),实现了大范围高速公路的交通速度预测;文献[13]将路网速度分布图转换成时序灰度影像,结合CNN与LSTM模型进行速度预测。上述这些模型中,CNN能够提取隐含的空间特征,LSTM可以较好地学习长时序规律。

然而,上述研究都没有很好地将时间特征、空间特征进行关联、量化来进行交通速度预测。路段交通速度的空间特征通常用空间邻接关系或图结构表示,时间特征则可以进一步分为两种,路段自身的历史依赖特征以及路段间速度变化在时间上的相似特征。以交通拥堵为例,某个路段出现拥堵现象时,其周围路段也可能会出现相应的滞缓现象,拥堵消失时,邻接路段的车速也会逐渐增加,这两者间的变化模式存在一定的相似性和滞后性。这种速度序列的关联信息,在空间上表现为路段的拓扑邻接关系,在时间上表现为速度变化的相似性关联,共同对交通速度变化产生了至关重要的影响。为了完整体现这种关联信息,我们需要将空间特征和时间特征综合起来考虑,并提供一种量化方法来区分不同关联信息的重要程度,以提升交通速度预测的效果。

为了将关联信息的时空特征输入到模型之中,本文首先设计了一种时空关联度,从时间与空间两个维度量化速度序列之间的关联程度,并将它通过加权的方式对速度序列进行处理。在此基础上,本文提出了一种基于时空关联度加权的LSTM模型(Spatio-Temporal Correlation Long Short-Term Memory,STC-LSTM)用于交通速度预测。模型首先通过综合动态时间规整(Summation Dynamic Time Warping,SDTW)定义了一种时间关联度;然后将它与路段邻接关系相结合,形成了时空关联度,用来综合描述路段间关联程度的时空特征;最后将这种时空关联度作为权重,结合LSTM进行交通速度预测。

1 基于SDTW的时间关联度

时间关联度是用于测定两个给定的速度序列变化曲线之间接近程度的大小度量,本质上是一种相似性度量。而在时间序列相似性度量中,常用的距离函数主要有欧氏距离(Euclidean Distance,ED)、马氏距离(Mahalanobis Dis

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值