计算机设备2后符号,标点符号的添加方法、装置和计算机设备与流程

本文介绍了一种使用深度学习技术的标点符号添加方法,通过编码汉字、生成特征向量、双向LSTM模型捕捉上下文信息,并通过深层神经网络预测标点概率。方法涉及字典编码、分词词性分析、上下文理解,以及针对语音识别输入的特殊处理。该技术应用于标点符号添加装置和计算机设备中,提升了文本处理的智能化水平。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

98e88d09c23f21df98fdf6a4f9beae91.gif

技术特征:

1.一种标点符号的添加方法,其特征在于,包括:

对待识别文本中的每个汉字进行编码,根据所述汉字的编码、所述汉字的分词词性和分词边界生成所述汉字的特征向量;

将所述汉字的特征向量输入双向的长短时记忆模型,通过所述双向的长短时记忆模型将所述汉字的特征向量与所述双向的长短时记忆模型获取的所述汉字的双方向的上下文信息结合,生成所述汉字的输入特征;

将所述汉字的输入特征输入深层神经网络模型,获得所述汉字后每种标点符号的添加结果对应的概率,所述汉字后每种标点符号的添加结果对应的概率包括:所述汉字后不加标点符号的概率,以及所述汉字后加每种标点符号的概率;

根据概率最高的添加结果在所述汉字后添加标点符号。

2.根据权利要求1所述的方法,其特征在于,所述对待识别文本中的每个汉字进行编码包括:

利用预先统计的字典,对待识别文本中的每个汉字进行编码。

3.根据权利要求1所述的方法,其特征在于,所述双向的长短时记忆模型获取的所述汉字的双方向的上下文信息包括:所述汉字的从前至后和从后至前两个方向整句文本的上下文信息,所述上下文信息包括所述汉字所属的句子成分、所述汉字在句子中的位置、所述汉字的上下文文本中各分词的分词属性和所述汉字的上下文文本的语义信息。

4.根据权利要求1所述的方法,其特征在于,所述将所述汉字的输入特征输入深层神经网络模型之前,还包括:

对训练语句中的每个汉字进行编码,作为输入特征;

将所述训练语句中所述汉字后的标点符号的添加结果进行编码,作为输出特征;

通过所述输入特征和所述输出特征对深层神经网络模型进行训练,当所述深层神经网络模型的输出结果与所述输出特征误差最小时,获得训练好的深层神经网络模型。

5.根据权利要求1-4任意一项所述的方法,其特征在于,所述对待识别文本中的每个汉字进行编码之前,还包括:

对用户输入的语音进行识别,获得待识别文本,所述待识别文本中包括所述语音的间隔信息;

所述根据概率最高的添加结果在所述汉字后添加标点符号之后,还包括:

对所述语音的间隔信息对应的每个语音间隔添加标点符号的情况进行检测;

在尚未添加标点符号的语音间隔添加标点符号。

6.一种标点符号的添加装置,其特征在于,包括:

生成模块,用于对待识别文本中的每个汉字进行编码,根据所述汉字的编码、所述汉字的分词词性和分词边界生成所述汉字的特征向量;以及将所述汉字的特征向量输入双向的长短时记忆模型,通过所述双向的长短时记忆模型将所述汉字的特征向量与所述双向的长短时记忆模型获取的所述汉字的双方向的上下文信息结合,生成所述汉字的输入特征;

获得模块,用于将所述汉字的输入特征输入深层神经网络模型,获得所述汉字后每种标点符号的添加结果对应的概率,所述汉字后每种标点符号的添加结果对应的概率包括:所述汉字后不加标点符号的概率,以及所述汉字后加每种标点符号的概率;

添加模块,用于根据概率最高的添加结果在所述汉字后添加标点符号。

7.根据权利要求6所述的装置,其特征在于,

所述生成模块,具体用于利用预先统计的字典,对待识别文本中的每个汉字进行编码。

8.根据权利要求6所述的装置,其特征在于,所述双向的长短时记忆模型获取的所述汉字的双方向的上下文信息包括:所述汉字的从前至后和从后至前两个方向整句文本的上下文信息,所述上下文信息包括所述汉字所属的句子成分、所述汉字在句子中的位置、所述汉字的上下文文本中各分词的分词属性和所述汉字的上下文文本的语义信息。

9.根据权利要求6所述的装置,其特征在于,还包括:

训练模块,用于对训练语句中的每个汉字进行编码,作为输入特征;将所述训练语句中所述汉字后的标点符号的添加结果进行编码,作为输出特征;通过所述输入特征和所述输出特征对深层神经网络模型进行训练,当所述深层神经网络模型的输出结果与所述输出特征误差最小时,获得训练好的深层神经网络模型。

10.根据权利要求6-9任意一项所述的装置,其特征在于,还包括:

识别模块,用于对用户输入的语音进行识别,获得待识别文本,所述待识别文本中包括所述语音的间隔信息;

检测模块,用于在所述添加模块根据概率最高的添加结果在所述汉字后添加标点符号之后,对所述语音的间隔信息对应的每个语音间隔添加标点符号的情况进行检测;

所述添加模块,还用于在尚未添加标点符号的语音间隔添加标点符号。

11.一种计算机设备,其特征在于,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时,实现如权利要求1-5中任一所述的方法。

12.一种非临时性计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1-5中任一所述的方法。

内容概要:本文介绍了一款国内首家推出的车载DC/DC转换器解决方案,旨在解决传统电源方案的诸多痛点并助力车载电源智能化升级。硬件设计方面,采用TI C2000系列主控芯片,搭配进口功率器件高精度采样电路,提供了高可靠性的电源方案,甚至将输入级EMI滤波部分进行了模块化设计,并给出了不同功率等级下的元器件选型表。软件部分实现了电压环、电流环双闭环控制,采用了动态调整算法,创新地使用DMA搬运PWM占空比参数,降低CPU占用率,同时在输入电压异常时自动切换硬件保护模式。上位机工具提供实时数据显示、参数设置、波形分析等功能,开放了协议栈源码,内置自动标定功能。; 适合人群:从事车载电源开发的工程师,尤其是希望提升产品开发效率技术水平的专业人士。; 使用场景及目标:①硬件工程师可以借鉴模块化设计思路详细的元器件选型表,优化电路设计;②软件工程师可以从双闭环控制算法、DMA传输机制等方面学习先进的编程技巧;③调试人员利用上位机工具进行便捷高效的参数调整故障排查。; 其他说明:该方案不仅提供了完整的技术文档支持,而且开放的软件架构配套调试工具极大地方便了二次开发,提高了开发效率。建议对车载电源开发感兴趣的工程师获取相关资料深入学习。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值