python pandas 读取数据库_使用python的pandas库读取csv文件保存至mysql数据库

第一:pandas.read_csv读取本地csv文件为数据框形式

data=pd.read_csv('g:\data_operation\python_book\chapter5\\sales.csv')

第二:如果存在日期格式数据,利用pandas.to_datatime()改变类型

data.iloc[:,1]=pd.to_datetime(data.iloc[:,1])

注意:=号,这样在原始的数据框中,改变了列的类型

第三:查看列类型

print(data.dtypes)

第四:方法一:保存至mysql【缺点耗时长】

利用mysqldb库,封装成一个类,实现创建表,添加数据的操作,缺点耗时长

class jess_mysql():

"""

设置mysql类,实现创建数据框,表,及添加数据

"""

def __init__(self):

self.mysql=mysqldb.connect(user=mysql_name,host=mysql_host,password=mysql_password,database=mysql_database)

self.conn=self.mysql.cursor()

def create_table(self,table_names,col_names):

"""

创建表

:param table_names: 表名

:param col_names: 列名,列表格式

:return:

"""

tables=' varchar(20),'.join(['%s'] *len(col_names))

sql_yuju='create table if not exists `{t}` ({v} varchar(20))'.format(t=table_names,v=tables)#字段需要标注格式

ss=sql_yuju %(tuple(col_names))

print(ss)

self.conn.execute(ss)

self.mysql.commit()

def add_data(self,table_name,col_names,col_data):

"""

:param table_name: 表名

:param col_names: 列名,字段名

:param col_data: 字段值

:return:

"""

colname=','.join(['%s']*len(col_names))

data=','.join(['%s']*len(col_data))

sql_yuju='insert into `{t}` ({name}) values ({data});'.format(t=table_name,name=colname,data=data)

ss=sql_yuju%(*col_names,*col_data)

#print(ss)

self.conn.execute(ss)

self.mysql.commit()

第五:利用sqlalchemy的create_engine()方法

1、创建连接

import sqlalchemy

#engine=sqlalchemy.create_engine('mysql + mysqldb://root:123456@118.24.26.227:3306/python_yuny')

engine=sqlalchemy.create_engine('mysql+mysqldb://{user}:{password}@{host}:3306/{database}'.format

(user=mysql_name,password=mysql_password,host=mysql_host,database=mysql_database))

2、利用pd.io.sql.to_sql()

pd.io.sql.to_sql(frame=data,name='yunying',con=engine,index=false,if_exists='append')

注意相关参数的设置。

此外,保存到mysql中,需要注意日期格式的列,因为在mysql对应的field设置格式为varchar(20)后,原始的日期2015-8-9,写入数据库,只有2015,这需要两步操作。

a、上面第二目录的,利用pandas.to_datetime(,format='%y-%m-%d')       #format的格式要和原始字符2016-8-9格式一样

b、利用datetime库,实现format='%y%m%d'

x=data.shape[0]

for i in range(x):

col_data=list(df.iloc[i,:])

col_data[1]=datetime.date.strftime(col_data[1],'%y%d%m')

•这一步后,日期格式由原始的2016-6-2,转为20160606,就可以以写入数据库对应的字段【其字段类型varchar(20)】

第六:读取mysql的数据

df=pd.read_sql('select * from %s'%table_name,con=engine,index_col=none)

默认不设置索引列,可以自行指定索引列名。

总结

以上所述是小编给大家介绍的使用python的pandas库读取csv文件保存至mysql数据库,希望对大家有所帮助

如您对本文有疑问或者有任何想说的,请点击进行留言回复,万千网友为您解惑!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值