微型计算机地基本结构,微型计算机地基本结构.ppt

微型计算机地基本结构

ENIAC 与掌上电脑 * ENIAC (1946) 掌上电脑(2000) 诺依曼计算机的工作原理可概述为: “存储程序” + “程序控制” 要点: 1.以二进制表示数据和指令(程序) 2. 先将程序存入存储器中,再由控制器自动读取并执行 输 入 设 备 控制器 输 出 设 备 CPU 存储器 运算器ALU 计算机发展简史 1. 根据使用的基本电子器件,计算机经历了四个阶段: 电子管计算机 (1946—1956) 晶体管计算机 (1957—1964) 集成电路计算机 (1965—1970) 超大规模集成 电路计算机 (1971—至今) 用机器语言、汇编语言编写程序 用于军事和国防尖端技术 开始使用高级语言编写程序 开始用于工程技术、数据处理和 其它科学领域 采用微程序、流水线等技术, 提高运行速度 出现操作系统、诊断程序等软件 采用半导体存储器 采用图形界面操作系统 器件速度更快, 软件、外设更加丰富 主 要 特 点 2.计算机的两个方向发展: 研制高速度、强功能的巨型机和大型机 适应军事和尖端科学的需要。 研制价格低廉的超小型机和微型机 开拓应用领域和占领更广大的市场。 微型计算机是第四代计算机的典型代表。 微型计算机的基本结构 简介 (1) 构成部件 ; ( 2) 工作过程 存 储 器 I/O 接 口 输 入 设 备 I/O 接 口 数据总线 DB 控制总线 CB 地址总线 AB 输 出 设 备 CPU 微机的硬件由CPU、存储器、输入/输出设备构成; 输入/输出设备通过输入/输出接口与系统相连; ( 输入/输出接口简称I/O接口 ) 各部件通过总线连接。 构成部件 构成部件 总线 总线是连接多个功能部件的一组公共信号线 微机中各功能部件之间的信息是通过总线传输 总线 BUS 存 储 器 I/O 接 口 输 入 设 备 I/O 接 口 输 出 设 备 CPU ISA插 槽 PCI插槽 AGP插 槽 北桥 芯片组 南桥 芯片组 内存插槽 CPU插槽 IDE接口 软驱接口 并口连接器 串口连接器 ROM BIOS 鼠标键盘 USB 接口 主板 电源 插座 550MHz IDE2 Pentium III 北桥 440BX AGP 南桥 PIIX4E CMOS & RTC USB 超级I/O IDE1 COM1 COM2 LPT1 550MHz L1 Cache L2 Cache 处理机总线 100MHz 100MHz PCI 总线 33MHz PCI 插槽 ISA 插槽 ISA总线 8MHz 内存条 ROM BIOS 显 示 器 硬盘 光驱 软驱 键盘鼠标 打印机 MODEM 66MHz 显卡 按信号的作用,总线分为三类: 地址总线、数据总线、控制总线 存 储 器 I/O 接 口 输 入 设 备 I/O 接 口 数据总线 DB 控制总线 CB 地址总线 AB 输 出 设 备 CPU 地址总线 AB ( Address Bus) :单向 用来传送CPU输出的地址信号, 确定被访问的存储单元、I/O端口。 存 储 器 I/O 接 口 输 入 设 备 I/O 接 口 数据总线 DB 控制总线 CB 地址总线 AB 输 出 设 备 CPU 地址总线的条数 决定CPU的寻址能力。 10根 → 210 1024 1K 20根 → 220 1024K 1M 32根 → 232 22 × 230 4G 36根 → 236 26 × 230 64G 数据总线 DB ( Data Bus ):双向 用来在CPU与存储器、I/O接口之间进行数据传送。 存 储 器 I/O 接 口 输 入 设 备 I/O 接 口 数据总线 DB 控制总线 CB 地址总线 AB 输 出 设 备 CPU 数据总线的条数决定一次可最多传送数据的宽度。 8 根 → 一次传送 8位 16 根 → 一次传送 16位 32 根 → 一次传送 32位 64 根 → 一次传送 64位 控制总线CB ( Control Bus ) : 用于传送各种控制信号。 存 储 器 I/O 接 口 输 入 设 备 I/O 接 口 数据总线 DB 控制总线 CB 地址总线 AB 输 出 设 备 CPU 有的是CPU发出,如读控制信号、写控制信号; 有的是发

智慧旅游解决方案利用云计算、物联网和移动互联网技术,通过便携终端设备,实现对旅游资源、经济、活动和旅游者信息的智能感知和发布。这种技术的应用旨在提升游客在旅游各个环节的体验,使他们能够轻松获取信息、规划行程、预订票务和安排食宿。智慧旅游平台为旅游管理部门、企业和游客提供服务,包括政策发布、行政管理、景区安全、游客流量统计分析、投诉反馈等。此外,平台还提供广告促销、库存信息、景点介绍、电子门票、社交互动等功能。 智慧旅游的建设规划得到了国家政策的支持,如《国家中长期科技发展规划纲要》和国务院的《关于加快发展旅游业的意见》,这些政策强调了旅游信息服务平台的建设和信息化服务的重要性。随着技术的成熟和政策环境的优化,智慧旅游的时机已经到来。 智慧旅游平台采用SaaS、PaaS和IaaS等云服务模式,提供简化的软件开发、测试和部署环境,实现资源的按需配置和快速部署。这些服务模式支持旅游企业、消费者和管理部门开发高性能、高可扩展的应用服务。平台还整合了旅游信息资源,提供了丰富的旅游产品创意平台和统一的旅游综合信息库。 智慧旅游融合应用面向游客和景区景点主管机构,提供无线城市门户、智能导游、智能门票及优惠券、景区综合安防、车辆及停车场管理等服务。这些应用通过物联网和云计算技术,实现了旅游服务的智能化、个性化和协同化,提高了旅游服务的自由度和信息共享的动态性。 智慧旅游的发展标志着旅游信息化建设的智能化和应用多样化趋势,多种技术和应用交叉渗透至旅游行业的各个方面,预示着全面的智慧旅游时代已经到来。智慧旅游不仅提升了游客的旅游体验,也为旅游管理和服务提供了高效的技术支持。
智慧旅游解决方案利用云计算、物联网和移动互联网技术,通过便携终端设备,实现对旅游资源、经济、活动和旅游者信息的智能感知和发布。这种技术的应用旨在提升游客在旅游各个环节的体验,使他们能够轻松获取信息、规划行程、预订票务和安排食宿。智慧旅游平台为旅游管理部门、企业和游客提供服务,包括政策发布、行政管理、景区安全、游客流量统计分析、投诉反馈等。此外,平台还提供广告促销、库存信息、景点介绍、电子门票、社交互动等功能。 智慧旅游的建设规划得到了国家政策的支持,如《国家中长期科技发展规划纲要》和国务院的《关于加快发展旅游业的意见》,这些政策强调了旅游信息服务平台的建设和信息化服务的重要性。随着技术的成熟和政策环境的优化,智慧旅游的时机已经到来。 智慧旅游平台采用SaaS、PaaS和IaaS等云服务模式,提供简化的软件开发、测试和部署环境,实现资源的按需配置和快速部署。这些服务模式支持旅游企业、消费者和管理部门开发高性能、高可扩展的应用服务。平台还整合了旅游信息资源,提供了丰富的旅游产品创意平台和统一的旅游综合信息库。 智慧旅游融合应用面向游客和景区景点主管机构,提供无线城市门户、智能导游、智能门票及优惠券、景区综合安防、车辆及停车场管理等服务。这些应用通过物联网和云计算技术,实现了旅游服务的智能化、个性化和协同化,提高了旅游服务的自由度和信息共享的动态性。 智慧旅游的发展标志着旅游信息化建设的智能化和应用多样化趋势,多种技术和应用交叉渗透至旅游行业的各个方面,预示着全面的智慧旅游时代已经到来。智慧旅游不仅提升了游客的旅游体验,也为旅游管理和服务提供了高效的技术支持。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值