python session模块_Python backend.set_session方法代码示例

本文整理汇总了Python中keras.backend.set_session方法的典型用法代码示例。如果您正苦于以下问题:Python backend.set_session方法的具体用法?Python backend.set_session怎么用?Python backend.set_session使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在模块keras.backend的用法示例。

在下文中一共展示了backend.set_session方法的28个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: __init__

​点赞 6

# 需要导入模块: from keras import backend [as 别名]

# 或者: from keras.backend import set_session [as 别名]

def __init__(self, train_df, word_count, batch_size, epochs):

tf.set_random_seed(4)

session_conf = tf.ConfigProto(intra_op_parallelism_threads=2, inter_op_parallelism_threads=8)

backend.set_session(tf.Session(graph=tf.get_default_graph(), config=session_conf))

self.batch_size = batch_size

self.epochs = epochs

self.max_name_seq = 10

self.max_item_desc_seq = 75

self.max_text = word_count + 1

self.max_brand = np.max(train_df.brand_name.max()) + 1

self.max_condition = np.max(train_df.item_condition_id.max()) + 1

self.max_subcat0 = np.max(train_df.subcat_0.max()) + 1

self.max_subcat1 = np.max(train_df.subcat_1.max()) + 1

self.max_subcat2 = np.max(train_df.subcat_2.max()) + 1

开发者ID:aerdem4,项目名称:mercari-price-suggestion,代码行数:18,

示例2: __init__

​点赞 6

# 需要导入模块: from keras import backend [as 别名]

# 或者: from keras.backend import set_session [as 别名]

def __init__(self, action_size):

# environment settings

self.state_size = (84, 84, 4)

self.action_size = action_size

self.discount_factor = 0.99

self.no_op_steps = 30

# optimizer parameters

self.actor_lr = 2.5e-4

self.critic_lr = 2.5e-4

self.threads = 8

# create model for actor and critic network

self.actor, self.critic = self.build_model()

# method for training actor and critic network

self.optimizer = [self.actor_optimizer(), self.critic_optimizer()]

self.sess = tf.InteractiveSession()

K.set_session(self.sess)

self.sess.run(tf.global_variables_initializer())

self.summary_placeholders, self.update_ops, self.summary_op = self.setup_summary()

self.summary_writer = tf.summary.FileWriter('summary/breakout_a3c', self.sess.graph)

开发者ID:rlcode,项目名称:reinforcement-learning,代码行数:27,

示例3: __init__

​点赞 6

# 需要导入模块: from keras import backend [as 别名]

# 或者: from keras.backend import set_session [as 别名]

def __init__(self, sess, state_size, action_size, DDPG_config):

self.HIDDEN1_UNITS = DDPG_config['HIDDEN1_UNITS']

self.HIDDEN2_UNITS = DDPG_config['HIDDEN2_UNITS']

self.sess = sess

self.BATCH_SIZE = DDPG_config['BATCH_SIZE']

self.TAU = DDPG_config['TAU']

self.LEARNING_RATE = DDPG_config['LRC']

self.action_size = action_size

self.h_acti = relu

if DDPG_config['HACTI'] == 'selu':

self.h_acti = selu

K.set_session(sess)

#Now create the model

self.model, self.action, self.state = self.create_critic_network(state_size, action_size)

self.target_model, self.target_action, self.target_state = self.create_critic_network(state_size, action_size)

self.action_grads = tf.gradients(self.model.output, self.action) #GRADIENTS for policy update

self.sess.run(tf.global_variables_initializer())

开发者ID:knowledgedefinednetworking,项目名称:a-deep-rl-approach-for-sdn-routing-optimization,代码行数:23,

示例4: set_session_config

​点赞 6

# 需要导入模块: from keras import backend [as 别名]

# 或者: from keras.backend import set_session [as 别名]

def set_session_config(per_process_gpu_memory_fraction=None, allow_growth=None):

"""

:param allow_growth: When necessary, reserve memory

:param float per_process_gpu_memory_fraction: specify GPU memory usage as 0 to 1

:return:

"""

import tensorflow as tf

import keras.backend as K

config = tf.ConfigProto(

gpu_options=tf.GPUOptions(

per_process_gpu_memory_fraction=per_process_gpu_memory_fraction,

allow_growth=allow_growth,

)

)

sess = tf.Session(config=config)

K.set_session(sess)

开发者ID:Zeta36,项目名称:connect4-alpha-zero,代码行数:21,

示例5: prepare_model

​点赞 6

# 需要导入模块: from keras import backend [as 别名]

# 或者: from keras.backend import set_session [as 别名]

def prepare_model(self):

"""Prepares the model for training."""

# Set the Keras directory.

set_keras_base_directory()

if K.backend() == 'tensorflow':

# set GPU option allow_growth to False for GPU-enabled tensorflow

config = tf.ConfigProto()

config.gpu_options.allow_growth = False

sess = tf.Session(config=config)

K.set_session(sess)

# Deserialize the Keras model.

self.model = deserialize_keras_model(self.model)

self.optimizer = deserialize(self.optimizer)

# Compile the model with the specified loss and optimizer.

self.model.compile(loss=self.loss, loss_weights = self.loss_weights,

optimizer=self.optimizer, metrics=self.metrics)

开发者ID:cerndb,项目名称:dist-keras,代码行数:19,

示例6: __init__

​点赞 6

# 需要导入模块: from keras import backend [as 别名]

# 或者: from keras.backend import set_session [as 别名]

def __init__(self, sess, state_size, action_size, BATCH_SIZE, TAU, LEARNING_RATE, convolutional=False, output_activation='sigmoid'):

self.sess = sess

self.BATCH_SIZE = BATCH_SIZE

self.TAU = TAU

self.LEARNING_RATE = LEARNING_RATE

self.convolutional = convolutional

self.output_activation = output_activation

#K.set_session(sess)

#Now create the model

self.model , self.weights, self.state = self.create_actor_network(state_size, action_size)

self.target_model, self.target_weights, self.target_state = self.create_actor_network(state_size, action_size)

self.action_gradient = tf.placeholder(tf.float32,[None, action_size])

self.params_grad = tf.gradients(self.model.output, self.weights, -self.action_gradient)

grads = zip(self.params_grad, self.weights)

self.optimize = tf.train.AdamOptimizer(LEARNING_RATE).apply_gradients(grads)

init_op = tf.global_variables_initializer()

self.sess.run(init_op)

开发者ID:jhu-lcsr,项目名称:costar_plan,代码行数:21,

示例7: __init__

​点赞 6

# 需要导入模块: from keras import backend [as 别名]

# 或者: from keras.backend import set_session [as 别名]

def __init__(self, sess, state_size, action_size, BATCH_SIZE, TAU, LEARNING_RATE, convolutional=False):

self.sess = sess

self.BATCH_SIZE = BATCH_SIZE

self.TAU = TAU

self.LEARNING_RATE = LEARNING_RATE

self.action_size = action_size

self.convolutional = convolutional

#K.set_session(sess)

#Now create the model

self.model, self.action, self.state = self.create_critic_network(state_size, action_size)

self.target_model, self.target_action, self.target_state = self.create_critic_network(state_size, action_size)

self.action_grads = tf.gradients(self.model.output, self.action) #GRADIENTS for policy update

init_op = tf.global_variables_initializer()

self.sess.run(init_op)

开发者ID:jhu-lcsr,项目名称:costar_plan,代码行数:18,

示例8: ConfigureGPU

​点赞 6

# 需要导入模块: from keras import backend [as 别名]

# 或者: from keras.backend import set_session [as 别名]

def ConfigureGPU(args):

cpu = True if 'cpu' in args and args['cpu'] else False

fraction = 1

if 'gpu_fraction' in args and args['gpu_fraction']:

fraction = args['gpu_fraction']

if fraction < 1. or cpu:

import tensorflow as tf

import keras.backend as K

if cpu:

config = tf.ConfigProto(

device_count={'GPU': 0}

)

sess = tf.Session(config=config)

else:

gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=fraction)

sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))

K.set_session(sess)

开发者ID:jhu-lcsr,项目名称:costar_plan,代码行数:22,

示例9: parallel_gpu_jobs

​点赞 6

# 需要导入模块: from keras import backend [as 别名]

# 或者: from keras.backend import set_session [as 别名]

def parallel_gpu_jobs(allow_growth=True, fraction=.5):

'''Sets the max used memory as a fraction for tensorflow

backend

allow_growth :: True of False

fraction :: a float value (e.g. 0.5 means 4gb out of 8gb)

'''

import keras.backend as K

import tensorflow as tf

gpu_options = tf.GPUOptions(allow_growth=allow_growth,

per_process_gpu_memory_fraction=fraction)

config = tf.ConfigProto(gpu_options=gpu_options)

session = tf.Session(config=config)

K.set_session(session)

开发者ID:autonomio,项目名称:talos,代码行数:21,

示例10: init_devices

​点赞 6

# 需要导入模块: from keras import backend [as 别名]

# 或者: from keras.backend import set_session [as 别名]

def init_devices(device_type=None):

if device_type is None:

device_type = 'cpu'

num_cores = 4

if device_type == 'gpu':

num_GPU = 1

num_CPU = 1

else:

num_CPU = 1

num_GPU = 0

config = tf.ConfigProto(intra_op_parallelism_threads=num_cores,

inter_op_parallelism_threads=num_cores, allow_soft_placement=True,

device_count={'CPU': num_CPU, 'GPU': num_GPU})

session = tf.Session(config=config)

K.set_session(session)

开发者ID:chen0040,项目名称:keras-text-summarization,代码行数:20,

示例11: __start_train_model_on_video_frames_videograph

​点赞 6

# 需要导入模块: from keras import backend [as 别名]

# 或者: from keras.backend import set_session [as 别名]

def __start_train_model_on_video_frames_videograph(n_epochs, n_timesteps, n_centroids, timestamp, is_resume_training, start_epoch_num):

# configure the gpu to be used by keras

gpu_core_id = 3

device_id = '/gpu:%d' % gpu_core_id

# with graph.as_default():

# with session.as_default():

graph = tf.Graph()

config = tf.ConfigProto()

config.gpu_options.allow_growth = True

config.allow_soft_placement = True

sess = tf.Session(config=config, graph=graph)

K.set_session(sess)

with sess:

with tf.device(device_id):

__train_model_on_video_frames_videograph(n_epochs, n_timesteps, n_centroids, timestamp, is_resume_training, start_epoch_num)

开发者ID:noureldien,项目名称:videograph,代码行数:19,

示例12: __start_train_model_on_video_frames_backbone_i3d_keras

​点赞 6

# 需要导入模块: from keras import backend [as 别名]

# 或者: from keras.backend import set_session [as 别名]

def __start_train_model_on_video_frames_backbone_i3d_keras(n_epochs, starting_epoch_num, n_frames_per_video, n_instances, instance_num):

# configure the gpu to be used by keras

gpu_core_id = instance_num - 1

device_id = '/gpu:%d' % gpu_core_id

assert instance_num in [1, 2, 3], 'Sorry, wrong instance number: %d' % (instance_num)

graph = tf.Graph()

config = tf.ConfigProto()

config.gpu_options.allow_growth = True

config.allow_soft_placement = True

sess = tf.Session(config=config, graph=graph)

K.set_session(sess)

with sess:

with tf.device(device_id):

__train_model_on_video_frames_backbone_i3d_keras(n_epochs, starting_epoch_num, n_frames_per_video, n_instances, instance_num)

开发者ID:noureldien,项目名称:videograph,代码行数:18,

示例13: configure_hardware

​点赞 6

# 需要导入模块: from keras import backend [as 别名]

# 或者: from keras.backend import set_session [as 别名]

def configure_hardware(RAND_SEED):

'''configure rand seed, GPU'''

from keras import backend as K

if K.backend() == 'tensorflow':

K.tf.set_random_seed(RAND_SEED)

else:

K.theano.tensor.shared_randomstreams.RandomStreams(seed=RAND_SEED)

if K.backend() != 'tensorflow':

# GPU config for tf only

return

process_num = PARALLEL_PROCESS_NUM if args.param_selection else 1

tf = K.tf

gpu_options = tf.GPUOptions(

allow_growth=True,

per_process_gpu_memory_fraction=1./float(process_num))

config = tf.ConfigProto(

gpu_options=gpu_options,

allow_soft_placement=True)

sess = tf.Session(config=config)

K.set_session(sess)

return sess

开发者ID:kengz,项目名称:openai_lab,代码行数:25,

示例14: build_model

​点赞 6

# 需要导入模块: from keras import backend [as 别名]

# 或者: from keras.backend import set_session [as 别名]

def build_model(self, local_session = True):

import keras.backend as K

if local_session:

graph = K.tf.Graph()

session = K.tf.Session(graph=graph, config=K.tf.ConfigProto(

allow_soft_placement=True, log_device_placement=False,

gpu_options=K.tf.GPUOptions(

per_process_gpu_memory_fraction=1./self.comm.Get_size()) ) )

with graph.as_default():

with session.as_default():

import keras.backend as K

ret_model = self.build_model_aux()

ret_model.session = session

ret_model.graph = graph

return ret_model

else:

K.set_session( K.tf.Session( config=K.tf.ConfigProto(

allow_soft_placement=True, log_device_placement=False,

gpu_options=K.tf.GPUOptions(

per_process_gpu_memory_fraction=1./self.comm.Get_size()) ) ) )

return self.build_model_aux()

开发者ID:vlimant,项目名称:mpi_learn,代码行数:25,

示例15: __init__

​点赞 6

# 需要导入模块: from keras import backend [as 别名]

# 或者: from keras.backend import set_session [as 别名]

def __init__(self, nfeatures=50, arch=[8, 'act', 8, 'act'], fine_tune_layers=[2, 3], batch_size=16,

val_data=None, validate_every=1, activations='relu', epochs=5000, epochs_finetune=5000, optimizer=None, optimizer_finetune=None,

noise=0.0, droprate=0.0, verbose=True, stop_at_target_loss=0):

self.batch_size = batch_size

self.validate_every = validate_every

self.epochs = epochs

self.epochs_finetune = epochs_finetune

self.verbose = verbose

self.stop_at_target_loss = stop_at_target_loss

if val_data is None:

self.validate_every = 0

else:

self.Xval = val_data[0]

self.yval = val_data[1]

self._build_model(nfeatures, arch, activations, noise, droprate, optimizer, optimizer_finetune, fine_tune_layers)

self.sess = tf.Session()

K.set_session(self.sess)

self.sess.run(tf.global_variables_initializer())

开发者ID:erlendd,项目名称:ddan,代码行数:23,

示例16: __init__

​点赞 6

# 需要导入模块: from keras import backend [as 别名]

# 或者: from keras.backend import set_session [as 别名]

def __init__(self, nfeatures=50, arch=[8, 'act'], coral_layer_idx=[1],

batch_size=16, supervised=False, confusion=1e4, confusion_incr=50, confusion_max=1e9,

val_data=None, validate_every=1,

activations='relu', epochs=1000, optimizer=None, noise=0.0, droprate=0.0, verbose=True):

self.batch_size = batch_size

self.epochs = epochs

self.validate_every = validate_every

self.supervised = supervised

self.verbose = verbose

if val_data is None:

self.validate_every = 0

else:

self.Xval = val_data[0]

self.yval = val_data[1]

self._build_model(nfeatures, arch, supervised, confusion, confusion_incr,

confusion_max, activations, noise, droprate, coral_layer_idx, optimizer)

self.sess = tf.Session()

K.set_session(self.sess)

self.sess.run(tf.global_variables_initializer())

开发者ID:erlendd,项目名称:ddan,代码行数:25,

示例17: __init__

​点赞 6

# 需要导入模块: from keras import backend [as 别名]

# 或者: from keras.backend import set_session [as 别名]

def __init__(self, nfeatures=50, arch_shared=[32, 'act'], arch_domain=[8, 'act'], arch_clf=[],

batch_size=16, supervised=False, val_data=None, validate_every=1,

activations='relu', epochs=1000, optimizer=None, noise=0.0, droprate=0.0, stop_at_target_loss=0.0):

self.batch_size = batch_size

self.epochs = epochs

self.validate_every = validate_every

self.stop_at_target_loss = stop_at_target_loss

if val_data is None:

validate_every = 0

else:

self.Xval = val_data[0]

self.yval = val_data[1]

self._build_model(nfeatures, arch_shared, arch_domain, arch_clf,

activations, supervised, noise, droprate, optimizer)

self.sess = tf.Session()

K.set_session(self.sess)

self.sess.run(tf.global_variables_initializer())

开发者ID:erlendd,项目名称:ddan,代码行数:23,

示例18: __init__

​点赞 6

# 需要导入模块: from keras import backend [as 别名]

# 或者: from keras.backend import set_session [as 别名]

def __init__(self, nfeatures=50, arch=[8, 'act'], mmd_layer_idx=[1],

batch_size=16, supervised=False, confusion=0.0, confusion_incr=1e-3, confusion_max=1,

val_data=None, validate_every=1,

activations='relu', epochs=1000, optimizer=None, noise=0.0, droprate=0.0, verbose=True):

self.batch_size = batch_size

self.epochs = epochs

self.validate_every = validate_every

self.supervised = supervised

self.verbose = verbose

if val_data is None:

self.validate_every = 0

else:

self.Xval = val_data[0]

self.yval = val_data[1]

self._build_model(nfeatures, arch, supervised, confusion, confusion_incr,

confusion_max, activations, noise, droprate, mmd_layer_idx, optimizer)

self.sess = tf.Session()

K.set_session(self.sess)

self.sess.run(tf.global_variables_initializer())

开发者ID:erlendd,项目名称:ddan,代码行数:25,

示例19: setup

​点赞 5

# 需要导入模块: from keras import backend [as 别名]

# 或者: from keras.backend import set_session [as 别名]

def setup(env):

stderr = sys.stderr

sys.stderr = open(os.devnull, "w")

# pylint: disable=W0612

try:

import keras

except Exception as e:

raise e

finally:

sys.stderr = stderr

from keras import backend as K

if K.backend() == 'tensorflow':

TensorFlowLibrary.setup(env)

K.set_session(TensorFlowLibrary.create_session(env))

开发者ID:mme,项目名称:vergeml,代码行数:17,

示例20: __enter__

​点赞 5

# 需要导入模块: from keras import backend [as 别名]

# 或者: from keras.backend import set_session [as 别名]

def __enter__(self):

# pylint: disable=attribute-defined-outside-init

self.old_session = K.get_session()

self.g = self.requested_graph or tf.Graph() # pylint: disable=invalid-name

self.current_session = tf.Session(graph=self.g)

# pylint: enable=attribute-defined-outside-init

K.set_session(self.current_session)

return self.current_session, self.g

开发者ID:databricks,项目名称:spark-deep-learning,代码行数:10,

示例21: __exit__

​点赞 5

# 需要导入模块: from keras import backend [as 别名]

# 或者: from keras.backend import set_session [as 别名]

def __exit__(self, exc_type, exc_val, exc_tb):

# Restore the previous session

K.set_session(self.old_session)

开发者ID:databricks,项目名称:spark-deep-learning,代码行数:5,

示例22: __enter__

​点赞 5

# 需要导入模块: from keras import backend [as 别名]

# 或者: from keras.backend import set_session [as 别名]

def __enter__(self):

self.sess.__enter__()

if self.using_keras:

K.set_session(self.sess)

return self

开发者ID:databricks,项目名称:spark-deep-learning,代码行数:7,

示例23: __exit__

​点赞 5

# 需要导入模块: from keras import backend [as 别名]

# 或者: from keras.backend import set_session [as 别名]

def __exit__(self, *args):

if self.using_keras:

K.set_session(self.keras_prev_sess)

self.sess.__exit__(*args)

开发者ID:databricks,项目名称:spark-deep-learning,代码行数:6,

示例24: __init__

​点赞 5

# 需要导入模块: from keras import backend [as 别名]

# 或者: from keras.backend import set_session [as 别名]

def __init__(self, action_size):

self.render = False

self.load_model = False

# 상태와 행동의 크기 정의

self.state_size = (84, 84, 4)

self.action_size = action_size

# DQN 하이퍼파라미터

self.epsilon = 1.

self.epsilon_start, self.epsilon_end = 1.0, 0.1

self.exploration_steps = 1000000.

self.epsilon_decay_step = (self.epsilon_start - self.epsilon_end) \

/ self.exploration_steps

self.batch_size = 32

self.train_start = 50000

self.update_target_rate = 10000

self.discount_factor = 0.99

# 리플레이 메모리, 최대 크기 400000

self.memory = deque(maxlen=400000)

self.no_op_steps = 30

# 모델과 타겟모델을 생성하고 타겟모델 초기화

self.model = self.build_model()

self.target_model = self.build_model()

self.update_target_model()

self.optimizer = self.optimizer()

# 텐서보드 설정

self.sess = tf.InteractiveSession()

K.set_session(self.sess)

self.avg_q_max, self.avg_loss = 0, 0

self.summary_placeholders, self.update_ops, self.summary_op = \

self.setup_summary()

self.summary_writer = tf.summary.FileWriter(

'summary/breakout_dqn', self.sess.graph)

self.sess.run(tf.global_variables_initializer())

if self.load_model:

self.model.load_weights("./save_model/breakout_dqn.h5")

# Huber Loss를 이용하기 위해 최적화 함수를 직접 정의

开发者ID:rlcode,项目名称:reinforcement-learning-kr,代码行数:43,

示例25: __init__

​点赞 5

# 需要导入模块: from keras import backend [as 别名]

# 或者: from keras.backend import set_session [as 别名]

def __init__(self, action_size):

# 상태크기와 행동크기를 갖고옴

self.state_size = (84, 84, 4)

self.action_size = action_size

# A3C 하이퍼파라미터

self.discount_factor = 0.99

self.no_op_steps = 30

self.actor_lr = 2.5e-4

self.critic_lr = 2.5e-4

# 쓰레드의 갯수

self.threads = 8

# 정책신경망과 가치신경망을 생성

self.actor, self.critic = self.build_model()

# 정책신경망과 가치신경망을 업데이트하는 함수 생성

self.optimizer = [self.actor_optimizer(), self.critic_optimizer()]

# 텐서보드 설정

self.sess = tf.InteractiveSession()

K.set_session(self.sess)

self.sess.run(tf.global_variables_initializer())

self.summary_placeholders, self.update_ops, self.summary_op = \

self.setup_summary()

self.summary_writer = \

tf.summary.FileWriter('summary/breakout_a3c', self.sess.graph)

# 쓰레드를 만들어 학습을 하는 함수

开发者ID:rlcode,项目名称:reinforcement-learning-kr,代码行数:30,

示例26: __init__

​点赞 5

# 需要导入模块: from keras import backend [as 别名]

# 或者: from keras.backend import set_session [as 别名]

def __init__(self, action_size):

self.state_size = (84, 84, 4)

self.action_size = action_size

self.no_op_steps = 20

self.model = self.build_model()

self.sess = tf.InteractiveSession()

K.set_session(self.sess)

self.avg_q_max, self.avg_loss = 0, 0

self.sess.run(tf.global_variables_initializer())

开发者ID:rlcode,项目名称:reinforcement-learning-kr,代码行数:14,

示例27: __config_gpu_for_keras

​点赞 5

# 需要导入模块: from keras import backend [as 别名]

# 或者: from keras.backend import set_session [as 别名]

def __config_gpu_for_keras():

import tensorflow as tf

import keras.backend as K

gpu_core_id = __parse_gpu_id()

K.clear_session()

config = tf.ConfigProto()

config.gpu_options.visible_device_list = str(gpu_core_id)

config.gpu_options.allow_growth = True

session = tf.Session(config=config)

K.set_session(session)

# set which device to be used

const.GPU_CORE_ID = gpu_core_id

开发者ID:CMU-CREATE-Lab,项目名称:deep-smoke-machine,代码行数:17,

示例28: __init__

​点赞 5

# 需要导入模块: from keras import backend [as 别名]

# 或者: from keras.backend import set_session [as 别名]

def __init__(self, action_size):

self.render = False

self.load_model = False

# environment settings

self.state_size = (84, 84, 4)

self.action_size = action_size

# parameters about epsilon

self.epsilon = 1.

self.epsilon_start, self.epsilon_end = 1.0, 0.1

self.exploration_steps = 1000000.

self.epsilon_decay_step = (self.epsilon_start - self.epsilon_end) \

/ self.exploration_steps

# parameters about training

self.batch_size = 32

self.train_start = 50000

self.update_target_rate = 10000

self.discount_factor = 0.99

self.memory = deque(maxlen=400000)

self.no_op_steps = 30

# build

self.model = self.build_model()

self.target_model = self.build_model()

self.update_target_model()

self.optimizer = self.optimizer()

self.sess = tf.InteractiveSession()

K.set_session(self.sess)

self.avg_q_max, self.avg_loss = 0, 0

self.summary_placeholders, self.update_ops, self.summary_op = \

self.setup_summary()

self.summary_writer = tf.summary.FileWriter(

'summary/breakout_ddqn', self.sess.graph)

self.sess.run(tf.global_variables_initializer())

if self.load_model:

self.model.load_weights("./save_model/breakout_ddqn.h5")

# if the error is in [-1, 1], then the cost is quadratic to the error

# But outside the interval, the cost is linear to the error

开发者ID:rlcode,项目名称:reinforcement-learning,代码行数:43,

注:本文中的keras.backend.set_session方法示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值