先验概率和后验概率_朴素贝叶斯(NBM)之后验概率最大化的含义 | 统计学习方法...

cdd4d771d5a6fa73883a8be0ba939d98.png

朴素贝叶斯 - 贝叶斯估计Python复现:

舟晓南:朴素贝叶斯(Bayes)模型python复现 - 贝叶斯估计;下溢出问题

在《统计学习方法》一书中,详细说明了后验概率最大化与期望风险最小化之间的关系,深入地说明了后验概率最大化的含义,但其中的推导过程有所省略,这篇文章作为补充说明。

后验概率最大化的含义:

书中提到,朴素贝叶斯法将实例分到后验概率最大的类中,这等价于期望风险最小化。

要明白什么是期望风险最小化,首先要明白什么是期望。

期望是指某件事大量发生后的平均结果,反应了随机变量平均取值的大小。计算期望的公式:

其中x为X的取值,p为在X为该取值的概率,K为x可取值的数量。

期望与平均值之间的关系:

其中N是实例总数,n是X为x取值时的实例数量。

举个例子,在10户人家中有3户拥有1个孩子,有3户拥有2个孩子,有4户拥有3个孩子,则其期望为:

即对家庭的期望是每个家庭有2.1个孩子。

说回期望风险,按照书中的定义,期望风险的含义是:模型关于联合分布的期望损失,学习的目标就是选择期望风险最小的模型。

既然期望风险就是期望损失,那么我们需要定义一个损失函数,用来判断模型的好坏。

假设我们在朴素贝叶斯分类器中使用0-1损失函数:

其中f(X)就是习得的朴素贝叶斯模型。

那么期望风险代表的就是损失的平均值,函数为:

因为期望的定义是值出现的概率乘以具体值之和,所以上式可转换为损失函数与联合概率之积的积分:

在上式的转换中运用了联合概率,边缘概率和条件概率的关系。
我们设

为H(x)。

H(x)中损失函数大于等于0,条件概率P(y|x)大于0,因此H(x)大于0。同时P(x)也大于0,且当X=x时P(x)(先验概率)为常数,因此期望风险最小化可转换为条件期望最小化,即argminH(x)

上式的第二个等式成立,是因为损失函数表示当分类错误时取1,那么我们只需要最小化分类错误的概率,也就是最小化

上式最后推导出在朴素贝叶斯分类器中,期望风险最小化等价于后验概率最大化。


github:

如果觉得对您有帮助,还烦请点击下面的链接,帮忙github点个star~谢谢~

Zhouxiaonnan/machine-learning-notesandcode

所有笔记目录:包括《统计学习方法》中各个模型的理论和python复现部分,以及数据分析Mysql查询优化。

舟晓南:所有笔记目录 | 数据分析 | 机器学习 | 深度学习等

如何转行数据分析师:

舟晓南:如何转行和学习数据分析 | 工科生三个月成功转行数据分析心得浅谈

舟晓南:求职数据分析师岗位,简历应该如何写?|工科生三个月成功转行数据分析心得浅谈

欢迎关注专栏:

学习笔记:数据分析,机器学习,深度学习​zhuanlan.zhihu.com
a58872580646c8655c88823e68e874ab.png

数据分析,机器学习学习社群正式启动~

需要学习资料,想要加入社群均可私信~

在这里会分享各种数据分析相关资源,技能学习技巧和经验等等~

详情私信,一起进步吧!

写于成都 2020-9-4

第一次修改 2020-11-5

### 贝叶斯公式及其组成部分 贝叶斯公式是一种用于更新概率估计的强大工具,在机器学习领域具有广泛应用。该公式允许通过引入新的证据来调整初始假设的概率。 #### 先验概率 (Prior Probability) 先验概率表示在观察任何数据之前对于某个事件发生的信念程度[^1]。这通常基于先前的知识或经得出,可以视为模型训练前对参数分布的一种猜测。例如,在垃圾邮件分类器中,可以根据历史记录设定某封电子邮件是垃圾邮件的先验概率。 #### 后验概率 (Posterior Probability) 后验概率是在考虑了新获得的信息之后所得到的目标变量取特定值的可能性大小。具体来说就是当给定了某些观测结果时,我们能够更精确地推断出未知量的状态。继续上面的例子,收到一封具体的邮件后,根据其特征重新评估它是垃圾邮件的概率就属于后验概率。 #### 类条件概率 (Likelihood or Class Conditional Probabilities) 类条件概率指的是给定类别下样本属性出现的概率密度函数\(P(x|C_k)\),其中\(x\)代表输入向量而\(C_k\)则指代第k个类别标签[^2]。这类概率反映了不同类型的对象在其所属群体内的典型表现形式;比如图像识别任务里,圆形物体的颜色分布模式就可以看作是一个典型的类条件概率实例。 ### 机器学习中的应用案例 利用上述概念构建预测模型的一个经典例子便是朴素贝叶斯分类算法: ```python from sklearn.naive_bayes import GaussianNB import numpy as np # 创建简单二维数据集 X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) Y = np.array([0, 0, 0, 1, 1, 1]) clf = GaussianNB() clf.fit(X, Y) print(clf.predict([[0.8, 1]])) ``` 在这个简单的二元分类问题中,`GaussianNB()`实现了高斯朴素贝叶斯方法,它假定各维度上的特征服从正态分布并独立于其他维度。因此可以通过计算每种类别的联合概率——即乘积形式下的先与相应条件下似然度之积——最终选取最大者作为输出标记。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值