处理器哪个好_对比骁龙730G、765G、猎户座980、天玑1000处理器,性能哪个好?

目前来说,骁龙730G、765G、Exynos 980与MediaTek天玑1000绝对称得上是2020年一代神U的"候选人",从性能方面来说谁才是其中的佼佼者?哪个处理器才能成为真正的年度神U呢?今天小编就带大家来对比一下这四款处理器的性能究竟哪个更好!

首先我们来看一下这四款处理器的基本构架:

骁龙 730G 是用和骁龙 855 相同的架构(基于 A76 的大核心),用 8nm 制程工艺,CPU 性能较上一代提升 35%,GPU 性能较上代提升 25%,AI 性能翻倍。

3d4d50809aeb993b9488c23e93a60b55.png

骁龙765G平台搭载了基于7nm工艺制造的集成式5G芯片,它采用了1个超大核心(A76 2.4GHz)+1个大核心(A76 2.2GHz)+6个小核心(A55 1.8GHz)的三丛式Kryo 475 架构,GPU则是Adreno 620,内部集成骁龙X52调制解调器及射频系统,支持SA+NSA 5G双模组网

acce29264cad34ccfbdf7fb2f1c4a126.png

三星猎户座Exynos 980采用A77 架构,相比上一代的A76性能提升20% ,在架构设计上,包括2颗2.21GHz Cortex-A77核心以及六颗1.79GHz Cortex-A55核心,GPU为Mali-G76 MP5,其同样支持SA&NSA双模组网,4G-5G 双连接状态下,理论峰值下载速率可达3.55Gbps

a2de79a990e0c560b163cac57e2f0ef9.png

MediaTek天玑1000基于7nm工艺制程打造,并采用4*2.2GHz A77大核+4*2.0GHz A55小核,GPU为Mali-G77 MC7。按照ARM官方的介绍,A77 CPU架构性能提升20%,而Mali-G77 GPU性能提升40%,集成了5核ISP,并支持L1/L5双频GPS以及Wi-Fi 6,同样支持NSA+SA双模的5G

036a17ea66ed3e905449d12e6d3c8947.png

在以上处理器当中,我们可以看到除了骁龙730G之外,其余三个平台都是支持双模5G的。骁龙765G、MediaTek天玑1000和Exynos 980都集成了SA+NSA的双模方案,理论上的数据交互速率也会更块!

9b1aeb58127f8aceac732ce3073058e4.png

我们来看一下安兔兔的跑分结果,在综合能力上面,MediaTek天玑1000给予了我们最优秀的表现,相对于最弱的骁龙730G来说,有足足13多万的分数优势,从细节上来说,四款处理主要差距就是在CPU运算能力上,简单来说就是天玑1000在核心运算能力上有更加优秀的表现,单单从安兔兔跑分能力上来说,在处理器性能方面天玑1000>猎户座980>骁龙765G>骁龙730G。

291984efc276f34c746c01ad8e78211b.png

然后用Geekbench 4对处理器性能进行辅助验证,整体结果基本上和安兔兔测试成绩保持一致,MediaTek天玑1000无论是整体性能还是单核能力都占据了明显的优势;不过猎户座980和骁龙765G的关系则比较微妙:单核性能上猎户座980微微胜出,整体处理器能力上则是骁龙765G完胜;至于骁龙730G毫不意外在各项能力上都处于垫底的位置,也与前面的安兔兔跑分成绩保持了同样的水平。


接下来进行极限传输——压缩——解压缩的终极性能测试,通用测试核心压缩包大小为4GB,不单单可以为四款处理器进行公正的排名,还能最彻底观察骁龙765G和Exynos 980处理器实际数据处理能力到底如何。

97b9c5f7ce384644f5de157f0ba09f0e.png

通过以上4GB文件的传输、压缩和解压缩的评测,我们能够看出在这个考验处理器的硬实力上,天玑1000就像跑分app呈现的结果一样,相对于其他三款平台来说有着碾压性的优势,毫无疑问在运算能力上已经处于其中的霸主位置。

总结:从理论层面来看的话,这四款SoC芯片在性能方面的排名应该是天玑1000>猎户座980>骁龙765G>骁龙730G。 对次你这么看呢?欢迎留言

内容概要:本文探讨了在微电网优化中如何处理风光能源的不确定性,特别是通过引入机会约束和概率序列的方法。首先介绍了风光能源的随机性和波动性带来的挑战,然后详细解释了机会约束的概念,即在一定概率水平下放松约束条件,从而提高模型灵活性。接着讨论了概率序列的应用,它通过对历史数据分析生成多个可能的风光发电场景及其概率,以此为基础构建优化模型的目标函数和约束条件。文中提供了具体的Matlab代码示例,演示了如何利用CPLEX求解器解决此类优化问题,并强调了参数选择、模型构建、约束添加以及求解过程中应注意的技术细节。此外,还提到了一些实用技巧,如通过调整MIP gap提升求解效率,使用K-means聚类减少场景数量以降低计算复杂度等。 适合人群:从事电力系统研究、微电网设计与运营的专业人士,尤其是那些对风光不确定性建模感兴趣的研究者和技术人员。 使用场景及目标:适用于需要评估和优化含有大量间歇性可再生能源接入的微电网系统,旨在提高系统的经济性和稳定性,确保在面对风光出力波动时仍能维持正常运作。 其他说明:文中提到的方法不仅有助于学术研究,也可应用于实际工程项目中,帮助工程师们制定更为稳健的微电网调度计划。同时,文中提供的代码片段可供读者参考并应用于类似的问题情境中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值