周期三角波傅里叶级数例题_周期三角波的傅里叶级数

周期三角波的傅里叶级数

例题求下图所示周期性三角波 xt的三角函数形式傅里叶级数,其中周期为 0T,幅值为 A。-T0/2 T0/2Atxt解在 xt的一个周期中, xt可表示为00 00222TAttxt TAttT 由于 xt为偶函数,故正弦分量幅值 0nb。常值分量 00/20 0/ 01122T AaxtdT而余弦分量幅值为 0 00/2 /20 0/ 0222 2cosdcosd41,354cos1sin02,46,T Tn Aaxtnt tntTnAAnn L展 开 式 为 0 0 02 2 2411coscos3cos52 35Axt t t t L a 幅值频谱图 b 相位频谱图例题求下图所示周期性三角波 xt的复指数函数形式傅里叶级数,其中周期为 0T,幅值为 A。-T0/2 T0/2Atxt解方法一在 xt的一个周期中, xt可表示为00 00222TAttxt TAttT 0 0,1,jntnxtCe 方法二在 xt的一个周期中, xt可表示为00 00222TAttxt TAttT 0 00/2/1 0,12,TjntnCxtedn 0 0,12,jntnxtCe 下面考虑 n 取不等于 0 的整数0 00/2 /20 0/0 0 0222 2 2cosdcosd41,35,4cos1sin02,46,T Tn Aaxtnt tntTnnAAnn n LL由于 xt为偶函数,故正弦分量幅值 0nb。从而,1nnnCajb22141,3,5.112202,4,6.nnnnAnCajban00/200 00/111/22TCaxtdTAA从而其复指数形式是从而幅频谱 图是nC21,35,.02,46,./200,13,5,.nnAnCAn02 ;1,3,5,jntAxt e相频谱 图是n注其中积分计算0 000000 00 01cos sin1sinsin11sincostntdtdttttdttntCnn P22 例 1-1 图 1-6 把 xt轴平移到 T0/2 处后,求其傅里叶级数的三角函数展开式,并画出其幅频谱及相频谱图。解在 x(t)的一个周期中,可表示为00 000/2/2 /20/2AttTTxt tTtT由于 xt为偶函数,故正弦分量幅值 0nb。常值分量而余弦分量幅值为00/20 0/ 01122T AaxtdT0 0 00/2 /20 0/ /2/20 0200 022 4coscoss481cos sin41,35,.cos102,46,.T Tn TTaxtntdxtntdtAAtntdttTnnnn n 展 开 式 为 0 0 02 2 2411coscos3cos5.235Axt t t t幅频谱 024 1,35,.AAn nn相频谱 0 .从而,其幅频谱图是相频谱图是展开式也可以为 0 0 02 2 24 11sinsin3sin5.352Axt t t t幅频谱 024 1,35,.AAn nn相频谱 0 1,35,.2n n

  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

打赏
文章很值,打赏犒劳作者一下
表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 深蓝海洋 设计师:CSDN官方博客 返回首页

打赏

weixin_39811036

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者