python 分类变量回归_分类变量回归——Probit和Logit(附代码)

为什么不是普通线性回归?

使用普通线性回归技术,我们必须确保回归技术对于研究问题的适用性,才能相信回归结果是可靠的。识别回归技术的适用性,我们需要对回归分析进行诊断,诊断内容是线性回归最基本的六个假设是否成立,即

误差项是一个期望为0的随机变量;

对于解释变量的所有观测值,随机误差项有相同的方差;

随机误差项彼此不相关;

解释变量是确定性变量,不是随机变量,与随机误差项彼此之间相互独立;

解释变量之间不存在精确的(完全的)线性关系,即解释变量的样本观测值矩阵是满秩矩阵;

随机误差项服从正态分布。

那么,当我们遇到被解释变量为分类变量这一特殊的情境时,如果能够使用普通线性回归技术,就必须要满足以上所提到的六个基本假设,我们来进行一个简单的模拟。

我使用一个火箭发射成功与否的数据集来进行接下来的测试,首先我们读取数据集。

import numpy as np

import pandas as pd

data = pd.read_csv("challenger.csv")

data.drop(columns=['Unnamed: 0'], inplace=True)

数据集如下:

num_at_riskdistresslaunch_templeak_check_pressureorder

06170502

16069503

26068504

36067505

46072506

560731007

660701008

761572009

8616320010

9617020011

10607820012

11606720013

13606720015

14607520016

15607020017

16608120018

17607620019

18607920020

19607520021

20607620022

21615820023

我们使用statsmodels提供的线性回归分析API来完成回归,然后进行简单的可视化

import statsmodels.formula.api as smf

model = sm

  • 0
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Python probit回归建模是一种用于分类问题的统计建模方法。它是基于概率论和判别模型的一种方法,可以将自变量与因变量之间的关系建模为概率分布。Probit回归根据概率分布函数(累积分布函数)来估计因变量取特定值的概率。 在Python中,我们可以使用statsmodels库中的probit函数来实现probit回归建模。首先,我们需要导入所需的库并加载数据集。然后,我们可以使用probit函数来拟合模型并计算系数的估计值。 在建模过程中,我们需要选择适当的自变量和因变量,然后根据实际问题选择合适的概率分布函数,常见的有正态分布和逻辑斯蒂分布。 Probit回归模型的优势在于它可以提供关于因变量取特定值的概率。此外,与Logistic回归相比,Probit回归更加稳健,特别适用于数据中存在离群值的情况。 完成模型拟合后,我们可以使用模型进行预测,并根据需要评估模型的性能。可以使用一些评价指标(如准确率、召回率、精确率)来评估模型的分类效果。 最后,我们可以根据模型的系数来解释自变量与因变量之间的关系。这些系数表示了自变量对因变量概率的影响程度。我们可以使用假设检验来验证这些系数是否显著,进一步确定自变量的重要性。 总之,Python probit回归建模是一种统计建模方法,可以用于解决分类问题。通过选择适当的自变量和因变量,根据概率分布函数拟合模型,并根据系数进行解释和预测,我们可以得到关于自变量对因变量概率影响的有用信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值