python异步框架_python之异步任务框架Celery

官网参考:

介绍:

"""1)可以不依赖任何服务器,通过自身命令,启动服务(内部支持socket)2)celery服务为为其他项目服务提供异步解决任务需求的

注:会有两个服务同时运行,一个是项目服务,一个是celery服务,项目服务将需要异步处理的任务交给celery服务,celery就会在需要时异步完成项目的需求

人是一个独立运行的服务|医院也是一个独立运行的服务

正常情况下,人可以完成所有健康情况的动作,不需要医院的参与;但当人生病时,就会被医院接收,解决人生病问题

人生病的处理方案交给医院来解决,所有人不生病时,医院独立运行,人生病时,医院就来解决人生病的需求"""

Celery架构图:

Celery的架构由三部分组成,消息中间件(message broker)、任务执行单元(worker)和 任务执行结果存储(task result store)组成。

消息中间件

Celery本身不提供消息服务,但是可以方便的和第三方提供的消息中间件集成。包括,RabbitMQ, Redis等等

任务执行单元

Worker是Celery提供的任务执行的单元,worker并发的运行在分布式的系统节点中。

任务结果存储

Task result store用来存储Worker执行的任务的结果,Celery支持以不同方式存储任务的结果,包括AMQP, redis等

三、使用场景

异步执行:解决耗时任务

延迟执行:解决延迟任务

定时执行:解决周期(周期)任务

四、Celery的安装配置

pip install celery

消息中间件:RabbitMQ/Redis

app=Celery('任务名', broker='xxx', backend='xxx')

五、两种celery任务结构:提倡用包管理,结构更清晰

# 如果 Celery对象:Celery(...) 是放在一个模块下的

# 1)终端切换到该模块所在文件夹位置:scripts

# 2)执行启动worker的命令:celery worker -A 模块名 -l info -P eventlet

# 注:windows系统需要eventlet支持,Linux与MacOS直接执行:celery worker -A 模块名 -l info

# 注:模块名随意

# 如果 Celery对象:Celery(...) 是放在一个包下的

# 1)必须在这个包下建一个celery.py的文件,将Celery(...)产生对象的语句放在该文件中

# 2)执行启动worker的命令:celery worker -A 包名 -l info -P eventlet

# 注:windows系统需要eventlet支持,Linux与MacOS直接执行:celery worker -A 模块名 -l info

# 注:包名随意

七、Celery执行异步任务

包架构封装

project

├── celery_task # celery包

│ ├── __init__.py # 包文件

│ ├── celery.py # celery连接和配置相关文件,且名字必须交celery.py

│ └── tasks.py # 所有任务函数

├── add_task.py # 添加任务

└── get_result.py # 获取结果

celery.py 基本配置

# 1)创建app +任务

#2)启动celery(app)服务:

# 非windows

# 命令:celery worker-A celery_task -l info

# windows:

# pip3 install eventlet

# celery worker-A celery_task -l info -P eventlet

#3)添加任务:手动添加,要自定义添加任务的脚本,右键执行脚本

#4)获取结果:手动获取,要自定义获取任务的脚本,右键执行脚本fromcelery import Celery

# 无密码

broker= 'redis://127.0.0.1:6379/1'backend= 'redis://127.0.0.1:6379/2'# 有密码:

broker= 'redis://:123@127.0.0.1:6379/1'backend= 'redis://:123@127.0.0.1:6379/2'app= Celery(broker=broker, backend=backend, include=['celery_task.tasks'])'''broker : 任务仓库

backend : 任务结果仓库

include :任务(函数)所在文件'''

tasks.py 添加任务

from.celery import app

@app.task

def add(n1,n2):

res= n1+n2

print('n1+n2 = %s' %res)returnres

@app.task

def low(n1,n2):

res= n1-n2

print('n1-n2 = %s' %res)return res

add_task.py 添加立即、延迟任务

fromcelery_task import tasks

# delay :添加立即任务

# apply_async : 添加延迟任务

# eta : 执行的utc时间

# 添加立即执行任务

t1= tasks.add.delay(10, 20)

t2= tasks.low.delay(100, 50)

print(t1.id)

# 添加延迟任务fromcelery_package.tasks import jumpfromdatetime import datetime,timedelta

# 秒

def eta_second(second):

ctime=datetime.now() # 当前时间

utc_ctime=datetime.utcfromtimestamp(ctime.timestamp()) # 当前UTC时间

time_delay= timedelta(seconds=second) # 秒return utc_ctime + time_delay # 当前时间+往后延迟的秒

# 天

def eta_days(days):

ctime=datetime.now() # 当前时间

utc_ctime=datetime.utcfromtimestamp(ctime.timestamp()) # 当前UTC时间

time_delay= timedelta(days=days) # 天return utc_ctime + time_delay # 当前时间+往后延迟的天

jump.apply_async(args=(20,5), eta=eta_second(10)) # 10秒后执行

jump.apply_async(args=(20,5), eta=eta_days(1)) # 1天后执行

get_result.py 获取结果

fromcelery_task.celery import appfromcelery.result import AsyncResult

id= '21325a40-9d32-44b5-a701-9a31cc3c74b5'

if __name__ == '__main__':async = AsyncResult(id=id, app=app)if async.successful():

result= async.get()

print(result)

elifasync.failed():

print('任务失败')

elifasync.status == 'PENDING':

print('任务等待中被执行')

elifasync.status == 'RETRY':

print('任务异常后正在重试')

elifasync.status == 'STARTED':

print('任务已经开始被执行')

九、高级使用

celery.py 定时任务配置(循环的)

特点:

添加任务的终端关闭之后,停止添加

celery服务端关闭后,把关闭之后未执行的任务都执行一遍,然后继续接收任务

# 1)创建app +任务

#2)启动celery(app)服务:

# 注):-A 表示相对路径,所以一定先进入celery_task所在包-l 表示打印到日志 info 级别

# 非windows

# 命令:celery worker-A celery_task -l info

# windows:

# pip3 install eventlet

# celery worker-A celery_task -l info -P eventlet

#3)添加任务:自动添加任务,所以要启动一个添加任务的服务

# 命令:celery beat-A celery_task -l info

#4)获取结果fromcelery import Celery

# 无密码

broker= 'redis://127.0.0.1:6379/1'backend= 'redis://127.0.0.1:6379/2'# 有密码:

broker= 'redis://:123@127.0.0.1:6379/1'backend= 'redis://:123@127.0.0.1:6379/2'app= Celery(broker=broker, backend=backend, include=['celery_task.tasks'])

# 时区

app.conf.timezone= 'Asia/Shanghai'# 是否使用UTC

app.conf.enable_utc=False

# 自动任务的定时配置fromdatetime import timedeltafromcelery.schedules import crontab

app.conf.beat_schedule={

# 定时任务名字'fall_task': {'task': 'celery_task.tasks.fall','args':(30,20),'schedule': timedelta(seconds=3), # 3秒后执行

#'schedule': crontab(hour=8, day_of_week=1), # 每周一早八点

}

}'''fall_task:任务名自定义

task:任务来源

args:任务参数

schedule:定时时间'''

'schedule': crontab(hour=8, day_of_week=1), # 每周一早八点'''minute : 分钟

hour :小时

day_of_week :礼拜

day_of_month:月

month_of_year:年'''

tasks.py

from.celery import app

@app.task

def fall(n1,n2):

res= n1/n2

print('n1 /n2 = %s' %res)return res

get_result.py

fromcelery_task.celery import appfromcelery.result import AsyncResult

id= '21325a40-9d32-44b5-a701-9a31cc3c74b5'

if __name__ == '__main__':async = AsyncResult(id=id, app=app)if async.successful():

result= async.get()

print(result)

elifasync.failed():

print('任务失败')

elifasync.status == 'PENDING':

print('任务等待中被执行')

elifasync.status == 'RETRY':

print('任务异常后正在重试')

elifasync.status == 'STARTED':

print('任务已经开始被执行')

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值