官网参考:
介绍:
"""1)可以不依赖任何服务器,通过自身命令,启动服务(内部支持socket)2)celery服务为为其他项目服务提供异步解决任务需求的
注:会有两个服务同时运行,一个是项目服务,一个是celery服务,项目服务将需要异步处理的任务交给celery服务,celery就会在需要时异步完成项目的需求
人是一个独立运行的服务|医院也是一个独立运行的服务
正常情况下,人可以完成所有健康情况的动作,不需要医院的参与;但当人生病时,就会被医院接收,解决人生病问题
人生病的处理方案交给医院来解决,所有人不生病时,医院独立运行,人生病时,医院就来解决人生病的需求"""
Celery架构图:
Celery的架构由三部分组成,消息中间件(message broker)、任务执行单元(worker)和 任务执行结果存储(task result store)组成。
消息中间件
Celery本身不提供消息服务,但是可以方便的和第三方提供的消息中间件集成。包括,RabbitMQ, Redis等等
任务执行单元
Worker是Celery提供的任务执行的单元,worker并发的运行在分布式的系统节点中。
任务结果存储
Task result store用来存储Worker执行的任务的结果,Celery支持以不同方式存储任务的结果,包括AMQP, redis等
三、使用场景
异步执行:解决耗时任务
延迟执行:解决延迟任务
定时执行:解决周期(周期)任务
四、Celery的安装配置
pip install celery
消息中间件:RabbitMQ/Redis
app=Celery('任务名', broker='xxx', backend='xxx')
五、两种celery任务结构:提倡用包管理,结构更清晰
# 如果 Celery对象:Celery(...) 是放在一个模块下的
# 1)终端切换到该模块所在文件夹位置:scripts
# 2)执行启动worker的命令:celery worker -A 模块名 -l info -P eventlet
# 注:windows系统需要eventlet支持,Linux与MacOS直接执行:celery worker -A 模块名 -l info
# 注:模块名随意
# 如果 Celery对象:Celery(...) 是放在一个包下的
# 1)必须在这个包下建一个celery.py的文件,将Celery(...)产生对象的语句放在该文件中
# 2)执行启动worker的命令:celery worker -A 包名 -l info -P eventlet
# 注:windows系统需要eventlet支持,Linux与MacOS直接执行:celery worker -A 模块名 -l info
# 注:包名随意
七、Celery执行异步任务
包架构封装
project
├── celery_task # celery包
│ ├── __init__.py # 包文件
│ ├── celery.py # celery连接和配置相关文件,且名字必须交celery.py
│ └── tasks.py # 所有任务函数
├── add_task.py # 添加任务
└── get_result.py # 获取结果
celery.py 基本配置
# 1)创建app +任务
#2)启动celery(app)服务:
# 非windows
# 命令:celery worker-A celery_task -l info
# windows:
# pip3 install eventlet
# celery worker-A celery_task -l info -P eventlet
#3)添加任务:手动添加,要自定义添加任务的脚本,右键执行脚本
#4)获取结果:手动获取,要自定义获取任务的脚本,右键执行脚本fromcelery import Celery
# 无密码
broker= 'redis://127.0.0.1:6379/1'backend= 'redis://127.0.0.1:6379/2'# 有密码:
broker= 'redis://:123@127.0.0.1:6379/1'backend= 'redis://:123@127.0.0.1:6379/2'app= Celery(broker=broker, backend=backend, include=['celery_task.tasks'])'''broker : 任务仓库
backend : 任务结果仓库
include :任务(函数)所在文件'''
tasks.py 添加任务
from.celery import app
@app.task
def add(n1,n2):
res= n1+n2
print('n1+n2 = %s' %res)returnres
@app.task
def low(n1,n2):
res= n1-n2
print('n1-n2 = %s' %res)return res
add_task.py 添加立即、延迟任务
fromcelery_task import tasks
# delay :添加立即任务
# apply_async : 添加延迟任务
# eta : 执行的utc时间
# 添加立即执行任务
t1= tasks.add.delay(10, 20)
t2= tasks.low.delay(100, 50)
print(t1.id)
# 添加延迟任务fromcelery_package.tasks import jumpfromdatetime import datetime,timedelta
# 秒
def eta_second(second):
ctime=datetime.now() # 当前时间
utc_ctime=datetime.utcfromtimestamp(ctime.timestamp()) # 当前UTC时间
time_delay= timedelta(seconds=second) # 秒return utc_ctime + time_delay # 当前时间+往后延迟的秒
# 天
def eta_days(days):
ctime=datetime.now() # 当前时间
utc_ctime=datetime.utcfromtimestamp(ctime.timestamp()) # 当前UTC时间
time_delay= timedelta(days=days) # 天return utc_ctime + time_delay # 当前时间+往后延迟的天
jump.apply_async(args=(20,5), eta=eta_second(10)) # 10秒后执行
jump.apply_async(args=(20,5), eta=eta_days(1)) # 1天后执行
get_result.py 获取结果
fromcelery_task.celery import appfromcelery.result import AsyncResult
id= '21325a40-9d32-44b5-a701-9a31cc3c74b5'
if __name__ == '__main__':async = AsyncResult(id=id, app=app)if async.successful():
result= async.get()
print(result)
elifasync.failed():
print('任务失败')
elifasync.status == 'PENDING':
print('任务等待中被执行')
elifasync.status == 'RETRY':
print('任务异常后正在重试')
elifasync.status == 'STARTED':
print('任务已经开始被执行')
九、高级使用
celery.py 定时任务配置(循环的)
特点:
添加任务的终端关闭之后,停止添加
celery服务端关闭后,把关闭之后未执行的任务都执行一遍,然后继续接收任务
# 1)创建app +任务
#2)启动celery(app)服务:
# 注):-A 表示相对路径,所以一定先进入celery_task所在包-l 表示打印到日志 info 级别
# 非windows
# 命令:celery worker-A celery_task -l info
# windows:
# pip3 install eventlet
# celery worker-A celery_task -l info -P eventlet
#3)添加任务:自动添加任务,所以要启动一个添加任务的服务
# 命令:celery beat-A celery_task -l info
#4)获取结果fromcelery import Celery
# 无密码
broker= 'redis://127.0.0.1:6379/1'backend= 'redis://127.0.0.1:6379/2'# 有密码:
broker= 'redis://:123@127.0.0.1:6379/1'backend= 'redis://:123@127.0.0.1:6379/2'app= Celery(broker=broker, backend=backend, include=['celery_task.tasks'])
# 时区
app.conf.timezone= 'Asia/Shanghai'# 是否使用UTC
app.conf.enable_utc=False
# 自动任务的定时配置fromdatetime import timedeltafromcelery.schedules import crontab
app.conf.beat_schedule={
# 定时任务名字'fall_task': {'task': 'celery_task.tasks.fall','args':(30,20),'schedule': timedelta(seconds=3), # 3秒后执行
#'schedule': crontab(hour=8, day_of_week=1), # 每周一早八点
}
}'''fall_task:任务名自定义
task:任务来源
args:任务参数
schedule:定时时间'''
'schedule': crontab(hour=8, day_of_week=1), # 每周一早八点'''minute : 分钟
hour :小时
day_of_week :礼拜
day_of_month:月
month_of_year:年'''
tasks.py
from.celery import app
@app.task
def fall(n1,n2):
res= n1/n2
print('n1 /n2 = %s' %res)return res
get_result.py
fromcelery_task.celery import appfromcelery.result import AsyncResult
id= '21325a40-9d32-44b5-a701-9a31cc3c74b5'
if __name__ == '__main__':async = AsyncResult(id=id, app=app)if async.successful():
result= async.get()
print(result)
elifasync.failed():
print('任务失败')
elifasync.status == 'PENDING':
print('任务等待中被执行')
elifasync.status == 'RETRY':
print('任务异常后正在重试')
elifasync.status == 'STARTED':
print('任务已经开始被执行')