函数用法和底层分析
函数:可重用的程序代码块。
函数的作用:不仅可以实现代码的复用,更能实现代码的一致性。一致性指的是,只要修改函数的代码,则所有调用该函数的地方都能得到体现。
在编写函数时,函数体中的代码写法和之前学习的内容基本一致,只是对代码实现了封装,并增加了函数调用、传递参数、返回计算结果等内容。为了更容易理解,也将深入内存底层进行分析。
一、函数简介
1、函数的基本概念
(1)一个程序由一个个任务组成;函数就是代表一个任务或者一个功能。
(2)函数是代码复用的通用机制。
2、Python 函数的分类
(1)内置函数
之前学习中使用的str()、list()、len()等这些都是内置函数,可以拿来直接使用。
(2)标准库函数
通过import 语句导入库,然后使用其中定义的函数
(3) 第三方库函数
Python 社区也提供了很多高质量的库。下载安装这些库后,也是通过 import 语句导
入,然后可以使用这些第三方库的函数
(4)用户自定义函数
用户自己定义的函数,显然也是开发中适应用户自身需求定义的函数。
二、函数的定义和调用
Python 中,定义函数的语法如下:
def 函数名([参数列表]):
'''文档字符串'''
函数体/若干语句
1、核心要点
(1)使用 def 定义函数,然后就是一个空格和函数名称
Python 执行 def 时,会创建一个函数对象,并绑定到函数名变量上。
(2) 参数列表圆括号内是形式参数列表,有多个参数则使用逗号隔开
形式参数不需要声明类型,也不需要指定函数返回值类型
无参数,也必须保留空的圆括号
实参列表必须与形参列表一 一对应
(3)return 返回值如果函数体中包含 return 语句,则结束函数执行并返回值;
如果函数体中不包含 return 语句,则返回 None 值。
(4)调用函数之前,必须要先定义函数,即先调用 def 创建函数对象内置函数对象会自动创建
标准库和第三方库函数,通过 import 导入模块时,会执行模块中的 def 语句
2、形参和实参
【操作】定义一个函数,实现两个数的比较,并返回较大的值。
def printMax(a, b):
'''实现两个数的比较,并返回较大的值'''
if a > b:
print(a, '较大值')
else:
print(b, '较大值')
printMax(10, 20)
printMax(30, 5)
运行结果:
20 较大值
30 较大值
代码中的 printMax 函数中,在定义时写的 printMax(a,b)。a 和 b 称为“形式参数”,简称“形参”。也就是说,形式参数是在定义函数时使用的。 形式参数的命名只要符合“标识符”命名规则即可。
在调用函数时,传递的参数称为“实际参数”,简称“实参”。代码中printMax(10,20),10 和 20 就是实际参数。
3、文档字符串(函数的注释)
程序的可读性最重要,一般建议在函数体开始的部分附上函数定义说明,这就是“文档字符
串”,也称为“函数的注释”。通过三个单引号或三个双引号来实现,中间可以加入多行文字进行说明。
【操作】测试文档字符串的使用
def print_star(n):
'''根据传入的 n,打印多个星号'''
print("*" * n)
help(print_star)
通过调用 help(函数名.__doc__)可以打印输出函数的文档字符串。执行结果如下:
Help on function print_star in module __main__:
print_star(n)
根据传入的 n,打印多个星号
4、返回值
(1)如果函数体中包含 return 语句,则结束函数执行并返回值;
(2)如果函数体中不包含 return 语句,则返回 None 值。
(3)要返回多个返回值,使用列表、元组、字典、集合将多个值“存起来”即可。
【操作】定义一个打印 n 个星号的无返回值的函数
def print_star(n):
print("*" * n)
print_star(5)
运行结果:
*****
【操作】定义一个返回两个数平均值的函数
def my_avg(a, b):
return (a + b) / 2
# 如下是函数的调用
c = my_avg(20, 30)
print(c)
运行结果:
25.0
三、函数也是对象,内存底层分析
Python 中,“一切都是对象”。实际上,执行 def 定义函数后,系统就创建了相应的函数对象。执行如下程序,然后进行内存底层的分析:
def print_star(n):
print("*" * n)
print(print_star)
print(id(print_star))
c = print_star
c(3)
运行结果:
***
45844000
上面代码执行 def 时,系统中会创建函数对象,并通过 print_star 这个变量进行引用:
执行“c=print_star”后,显然将 print_star 变量的值赋给了变量 c,内存图变成了:
显然,可以看出变量 c 和 print_star 都是指向了同一个函数对象。因此,执行 c(3)和执行 print_star(3)的效果是完全一致的。Python 中,圆括号意味着调用函数。在没有圆括号的情况下,Python 会把函数当做普通对象。
与此核心原理类似,也可以做如下操作:
zhengshu = int
zhengshu("234")
显然,我们将内置函数对象 int()赋值给了变量 zhengshu,这样 zhengshu 和 int 都是指向
了同一个内置函数对象。
四、变量的作用域( 全局变量和局部变量)
变量起作用的范围称为变量的作用域,不同作用域内同名变量之间互不影响。变量分为:全局变量、局部变量。
1、全局变量在函数和类定义之外声明的变量。作用域为定义的模块,从定义位置开始直到模块结束。
全局变量降低了函数的通用性和可读性。应尽量避免全局变量的使用。
全局变量一般做常量使用。
函数内要改变全局变量的值,使用 global 声明一下
2、局部变量在函数体中(包含形式参数)声明的变量。
局部变量的引用比全局变量快,优先考虑使用。
如果局部变量和全局变量同名,则在函数内隐藏全局变量,只使用同名的局部变量
【操作】全局变量的作用域测试
a = 100 # 全局变量
def f1():
global a # 如果要在函数内改变全局变量的值,增加 global 关键字声明
print(a) # 打印全局变量 a 的值
a = 300
f1()
print(a)
运行结果:
100
300
【操作】全局变量和局部变量同名测试
a = 100
def f1():
a = 3 # 同名的局部变量
print(a)
f1()
print(a) # a 仍然是 100,没有变化
运行结果:
3
100
【操作】 输出局部变量和全局变量
a = 100
def f1(a, b, c):
print(a, b, c)
print(locals()) # 打印输出的局部变量
print("-" * 20)
print(globals()) # 打印输出的全局变量
f1(2, 3, 4)
运行结果:
2 3 4
{'a': 2, 'b': 3, 'c': 4}
--------------------
{'__name__': '__main__', '__doc__': None, '__package__': None, '__loader__':
<_frozen_importlib_external.sourcefileloader object at>,
'__spec__': None, '__annotations__': {}, '__builtins__': , '__file__':
'test.py', '__cached__':None, 'a': 100, 'f1': }
3、局部变量和全局变量效率测试
局部变量的查询和访问速度比全局变量快,优先考虑使用,尤其是在循环的时候。
在特别强调效率的地方或者循环次数较多的地方,可以通过将全局变量转为局部变量提高运行速度。
【操作】测试局部变量和全局变量效率
import math
import time
def test01():
start = time.time()
for i in range(10000000):
math.sqrt(30)
end = time.time()
print("耗时{0}".format((end - start)))
def test02():
b = math.sqrt
start = time.time()
for i in range(10000000):
b(30)
end = time.time()
print("耗时{0}".format((end - start)))
test01()
test02()
运行结果:
耗时 6.46737003326416
耗时 3.7602150440216064
五、参数的传递
函数的参数传递本质上就是:从实参到形参的赋值操作。
Python 中“一切皆对象”,所有的赋值操作都是“引用的赋值”。所以,Python 中参数的传递都是“引用传递”,不是“值传递”。具体操作时分为两类:对“可变对象”进行“写操作”,直接作用于原对象本身。
对“不可变对象”进行“写操作”,会产生一个新的“对象空间”,并用新的值填充这块空间。(起到其他语言的“值传递”效果,但不是“值传递”)
可变对象有:字典、列表、集合、自定义的对象等
不可变对象有:数字、字符串、元组、function 等
1、传递可变对象的引用
传递参数是可变对象(例如:列表、字典、自定义的其他可变对象等),实际传递的还是对
象的引用。在函数体中不创建新的对象拷贝,而是可以直接修改所传递的对象。
【操作】参数传递:传递可变对象的引用
b = [10, 20]
def f2(m):
print("m:", id(m)) # b 和 m 是同一个对象
m.append(30) # 由于 m 是可变对象,不创建对象拷贝,直接修改这个对象
f2(b)
print("b:", id(b))
print(b)
运行结果:
m: 38232712
b: 38232712
[10, 20, 30]
2、传递不可变对象的引用
传递参数是不可变对象(例如:int、float、字符串、元组、布尔值),实际传递的还是对象的引用。在”赋值操作”时,由于不可变对象无法修改,系统会新创建一个对象。
【操作】参数传递:传递不可变对象的引用
a = 100
def f1(n):
print("n:", id(n)) # 传递进来的是 a 对象的地址
n = n + 200 # 由于 a 是不可变对象,因此创建新的对象 n
print("n:", id(n)) # n 已经变成了新的对象
print(n)
f1(a)
print("a:", id(a))
运行结果:
n: 8791424364464
n: 43029616
300
a: 8791424364464
显然,通过 id 值可以看到 n 和 a 一开始是同一个对象。给 n 赋值后,n 是新的对象。
3、浅拷贝和深拷贝
为了更深入的了解参数传递的底层原理,需要分析一下“浅拷贝和深拷贝”。可使用内置函数:copy(浅拷贝)、deepcopy(深拷贝)。
浅拷贝:不拷贝子对象的内容,只是拷贝子对象的引用。
深拷贝:会连子对象的内存也全部拷贝一份,对子对象的修改不会影响源对象
【操作】测试浅拷贝和深拷贝
import copy
def testCopy():
'''测试浅拷贝'''
a = [10, 20, [5, 6]]
b = copy.copy(a)
print("a", a)
print("b", b)
b.append(30)
b[2].append(7)
print("-----浅拷贝-----")
print("a", a)
print("b", b)
def testDeepCopy():
'''测试深拷贝'''
a = [10, 20, [5, 6]]
b = copy.deepcopy(a)
print("a", a)
print("b", b)
b.append(30)
b[2].append(7)
print("-----深拷贝-----")
print("a", a)
print("b", b)
testCopy()
print("-" * 20)
testDeepCopy()
运行结果:
a [10, 20, [5, 6]]
b [10, 20, [5, 6]]
-----浅拷贝-----
a [10, 20, [5, 6, 7]]
b [10, 20, [5, 6, 7], 30]
--------------------
a [10, 20, [5, 6]]
b [10, 20, [5, 6]]
-----深拷贝-----
a [10, 20, [5, 6]]
b [10, 20, [5, 6, 7], 30]
4、传递不可变对象包含的子对象是可变的情况
传递不可变对象时。不可变对象里面包含的子对象是可变的。则函数内修改了这个可变对象,源对象也发生了变化。
a = (10, 20, [5, 6])
print("a:", id(a))
def test01(m):
print("m:", id(m))
m[2][0] = 888
print(m)
print("m:", id(m))
test01(a)
print(a)
运行结果:
a: 36131824
m: 36131824
(10, 20, [888, 6])
m: 36131824
(10, 20, [888, 6])
六、参数的几种类型
1、位置参数
函数调用时,实参默认按位置顺序传递,需要个数和形参匹配。按位置传递的参数,称为:“位置参数”。
【操作】测试位置参数
def f1(a, b, c):
print(a, b, c)
f1(2, 3, 4)
f1(2, 3) # 报错,位置参数不匹配
运行结果:
2 3 4
Traceback (most recent call last):
File "test.py", line 6, in
f1(2, 3) # 报错,位置参数不匹配
TypeError: f1() missing 1 required positional argument: 'c'
2、默认值参数
可以为某些参数设置默认值,这样这些参数在传递时就是可选的。称为“默认值参数”。默认值参数放到位置参数后面。
【操作】测试默认值参数
def f1(a, b, c=10, d=20): # 默认值参数必须位于普通位置参数后面
print(a, b, c, d)
f1(8, 9)
f1(8, 9, 19)
f1(8, 9, 19, 29)
运行结果:
8 9 10 20
8 9 19 20
8 9 19 29
3、命名参数
可以按照形参的名称传递参数,称为“命名参数”,也称“关键字参数”。
【操作】测试命名参数
def f1(a, b, c):
print(a, b, c)
f1(8, 9, 19) # 位置参数
f1(c=10, a=20, b=30) # 命名参数
运行结果:
8 9 19
20 30 10
4、可变参数
可变参数指的是“可变数量的参数”。分两种情况:*param(一个星号),将多个参数收集到一个“元组”对象中。
**param(两个星号),将多个参数收集到一个“字典”对象中。
【操作】测试可变参数处理(元组、字典两种方式)
def f1(a, b, *c):
print(a, b, c)
def f2(a, b, **c):
print(a, b, c)
def f3(a, b, *c, **d):
print(a, b, c, d)
f1(8, 9, 19, 20)
f2(8, 9, name='xiaoxin', age=18)
f3(8, 9, 20, 30, name='xiaoxin', age=18)
运行结果:
8 9 (19, 20)
8 9 {'name': 'xiaoxin', 'age': 18}
8 9 (20, 30) {'name': 'xiaoxin', 'age': 18}
5、强制命名参数
在带星号的“可变参数”后面增加新的参数,必须在调用的时候“强制命名参数”。
【操作】强制命名参数的使用
def f1(*a, b, c):
print(a, b, c)
# f1(2, 3, 4) # 会报错。由于 a 是可变参数,将 2,3,4 全部收集。造成 b 和 c 没有赋值。
f1(2, b=3, c=4)
运行结果:
(2,) 3 4
七、几种特殊的函数
1、lambda 表达式和匿名函数
lambda 表达式可以用来声明匿名函数。
lambda 函数是一种简单的、在同一行中定义函数的方法。lambda 函数实际生成了一个函数对象。
lambda 表达式只允许包含一个表达式,不能包含复杂语句,该表达式的计算结果就是函数的返回值。
lambda 表达式的基本语法如下:
lambda arg1,arg2,arg3... :
arg1/arg2/arg3 为函数的参数。相当于函数体。
运算结果是:表达式的运算结果。
【操作】lambda 表达式使用
f = lambda a, b, c: a + b + c
print(f)
print(f(2, 3, 4))
g = [lambda a: a * 2, lambda b: b * 3, lambda c: c * 4]
print(g[0](6), g[1](7), g[2](8))
运行结果:
at 0x00000000004FC268>
9
12 21 32
2、eval()函数
功能:将字符串 str 当成有效的表达式来求值并返回计算结果。
语法:eval(source[, globals[, locals]]) -> value
参数:
source:一个 Python 表达式或函数 compile()返回的代码对象
globals:可选。必须是 dictionary
locals:可选。任意映射对象
【操作】测试 eval()函数
s = "print('abcde')"
eval(s)
a = 10
b = 20
c = eval("a+b")
print(c)
dict1 = dict(a=100, b=200)
d = eval("a+b", dict1)
print(d)
运行结果:
abcde
30
300
eval 函数会将字符串当做语句来执行,因此会被注入安全隐患。因此,使用时候要慎重!!!
3、递归函数
递归函数指的是:自己调用自己的函数,在函数体内部直接或间接的自己调用自己。递归类似于中学数学中的“数学归纳法”。 每个递归函数必须包含两个部分:
(1) 终止条件
表示递归什么时候结束。一般用于返回值,不再调用自己。
(2)递归步骤
把第 n 步的值和第 n-1 步相关联。
递归函数由于会创建大量的函数对象、过量的消耗内存和运算能力。在处理大量数据时,谨慎使用。
【操作】 使用递归函数计算阶乘(factorial)
def factorial(n):
if n == 1: return 1
return n * factorial(n - 1)
for i in range(1, 6):
print(i, '!=', factorial(i))
运行结果:
1 != 1
2 != 2
3 != 6
4 != 24
5 != 120
4、嵌套函数(内部函数)
嵌套函数:在函数内部定义的函数
【操作】嵌套函数定义
def f1():
print('f1 running...')
def f2():
print('f2 running...')
f2()
f1()
运行结果:
f1 running...
f2 running...
上面程序中,f2()就是定义在 f1 函数内部的函数。f2()的定义和调用都在 f1()函数内部。
一般在以下情况下使用嵌套函数:
(1) 封装 - 数据隐藏
外部无法访问“嵌套函数”。
(2)贯彻 DRY(Don’t Repeat Yourself) 原则
嵌套函数,可以避免在函数内部重复代码。
(3)闭包
后续会有详细的讲解
【操作】使用嵌套函数避免重复代码
def printChineseName(name, familyName):
print("{0}{1}".format(familyName, name))
def printEnglishName(name, familyName):
print("{0}{1}".format(name, familyName))
# 使用1个函数代替上面的两个函数
def printName(isChinese, name, familyName):
def inner_print(a, b):
print("{0}{1}".format(a, b))
if isChinese:
inner_print(familyName, name)
else:
inner_print(name, familyName)
printName(True, " 小新", "蜡笔")
printName(False, "George", "Bush")
运行结果:
蜡笔 小新
George Bush
5、nonlocal 关键字
nonlocal 用来声明外层的局部变量。
global 用来声明全局变量。
【操作】使用 nonlocal 声明外层局部变量
a = 100
def outer():
b = 10
def inner():
nonlocal b # 声明外部函数的局部变量
print("inner b:", b)
b = 20
global a # 声明全局变量
a = 1000
inner()
print("outer b:", b)
outer()
print("a :", a)
运行结果:
inner b: 10
outer b: 20
a : 1000
八、LEGB 规则
Python 在查找“名称”时,是按照 LEGB 规则查找的:
Local-->Enclosed-->Global-->Built inLocal 指的就是函数或者类的方法内部
Enclosed 指的是嵌套函数(一个函数包裹另一个函数,闭包)
Global 指的是模块中的全局变量
Built in 指的是 Python 为自己保留的特殊名称。
如果某个 name 映射在局部(local)命名空间中没有找到,接下来就会在闭包作用域(enclosed)进行搜索,如果闭包作用域也没有找到,Python 就会到全局(global)命名空间中进行查找,最后会在内建(built-in)命名空间搜索 (如果一个名称在所有命名空间中都没有找到,就会产生一个 NameError)。
【操作】测试 LEGB
str = "global"
def outer():
str = "outer"
def inner():
str = "inner"
print(str)
inner()
outer()
依次将几个 str 注释掉,观察控制台打印的内容,体会 LEBG 的搜索顺序。