python dataframe转置_Dataframe数据的增删改查,对齐(相加),转置,按值(索引)排序

数据转置

行列标签一起转置,利用.T实现

# -*- coding: utf-8 -*-

import pandas as pd

d = {'col1': [1,2,3], 'col2': [4,5,6],'col3':[7,8,9]}

df = pd.DataFrame(data=d)

print(df)

print('-----------')

print(df.T)

col1 col2 col3

0 1 4 7

1 2 5 8

2 3 6 9

-----------

0 1 2

col1 1 2 3

col2 4 5 6

col3 7 8 9

数据修改

1、通过直接索引修改整行和列

2、使用df.at修改单个值(建议新值和旧值数据类型应保持一致)

3、参考上一节loc和iloc的用法,使用df.loc或者df.iloc来灵活赋值

# -*- coding: utf-8 -*-

import pandas as pd

d = {'col1': [1,2,3], 'col2': [4,'66',6],'col3':[7,8,9]}

df = pd.DataFrame(data=d)

print(df)

print('------------------')

df['col1'] = 'aaa' # 直接修改一列

print(df)

print('-------------------')

df.at[1,'col2'] = 'py' #索引为1的行的col2列

print(df)

print('-----------')

# df.loc[[1]]['col1'] = 'bbb' # 这样是错的,不生效

df.loc[[1],'col1'] = 'bbb' # 这样是对的

print(df)

col1 col2 col3

0 1 4 7

1 2 66 8

2 3 6 9

------------------

col1 col2 col3

0 aaa 4 7

1 aaa 66 8

2 aaa 6 9

-------------------

col1 col2 col3

0 aaa 4 7

1 aaa py 8

2 aaa 6 9

-----------

并未变化

col1 col2 col3

0 aaa 4 7

1 bbb py 8

2 aaa 6 9

数据删除

1、del

2、drop函数

drop(labels=None, axis=0, index=None, columns=None, level=None, inplace=False, errors='raise')

常用操作

df.drop(['a', 'd'], axis=0) 删除索引为a、d的行,默认axis=0

df.drop(['a', 'd'], axis=1) 删除索引为a、d的列

df.drop(['a', 'd'], axis=1 ,inplace=False) 生成新df,不改变原df。默认是False

df.drop(['a', 'd'], axis=1 ,inplace=False) 改变原df

# -*- coding: utf-8 -*-

import pandas as pd

d = {'col1': [1,2,3], 'col2': [4,'66',6],'col3':[7,8,9]}

df = pd.DataFrame(data=d)

print(df)

print('------------------')

# del删除col1列

del(df['col1'])

print(df)

print('------------')

# drop删除索引为1的行

res = df.drop([1])

print(res)

print('-------------')

#删除索引为col2的列

df.drop(['col2'],axis=1,inplace=True)

print(df)

col1 col2 col3

0 1 4 7

1 2 66 8

2 3 6 9

------------------

col2 col3

0 4 7

1 66 8

2 6 9

------------

col2 col3

0 4 7

2 6 9

-------------

col3

0 7

1 8

2 9

对齐(相加)

# -*- coding: utf-8 -*-

import pandas as pd

d1 = {'col1': [1, 2], 'col2': [3, 4]}

d2 = {'col1': [4, 8], 'col2': [7, 9],'col3':[1,2]}

df1 = pd.DataFrame(data=d1)

df2 = pd.DataFrame(data=d2)

df = df1 + df2

print(df)

col1 col2 col3

0 5 10 NaN

1 10 13 NaN

排序

1)按值排序

sort_values(by, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last', ignore_index=False, key=None)

常用参数:

by:字符串或者列表;如果axis=0,那么by="列名";如果axis=1,那么by="行名"。

axis:默认值0,默认按照列排序,即纵向排序;如果为1,则是横向排序。

ascending:布尔型,True则升序,如果by=['列名1','列名2'],则该参数可以是[True, False],即第一字段升序,第二个降序。

inplace:布尔型,默认False代表返回新的对象。

na_position:{‘first’, ‘last’}, 默认是‘last’,默认缺失值排在最后面。

单列排序及多列排序

# -*- coding: utf-8 -*-

import pandas as pd

df = pd.DataFrame({'b':[1,2,3,2],'a':[4,3,2,1],'c':[1,3,8,2]},index=[2,0,1,3])

print(df)

print('------------')

df1 = df.sort_values(by='b',axis=0)

print(df1)

print('--------------')

# 多列排序

df2 = df.sort_values(by=['b','a'],axis=0,ascending=[False,True])

print(df2)

b a c

2 1 4 1

0 2 3 3

1 3 2 8

3 2 1 2

------------

b a c

2 1 4 1

0 2 3 3

3 2 1 2

1 3 2 8

--------------

b a c

1 3 2 8

3 2 1 2

0 2 3 3

2 1 4 1

2)按索引排序

sort_index函数

sort_index(axis=0, level=None, ascending=True, inplace=False, kind='quicksort', na_position='last', sort_remaining=True, ignore_index=False, key=None)

常用参数

axis:默认值0,0代表行索引排序,1代表按照列索引排序。

ascending:布尔型,True则升序

inplace:布尔型,是否用排序后的数据替换现有的数据

na_position:{‘first’, ‘last’}, 默认是‘last’,默认缺失值排在最后面。

# -*- coding: utf-8 -*-

import pandas as pd

df = pd.DataFrame({'b':[1,2,2,3],'a':[4,3,2,1],'c':[1,3,8,2]},index=[2,0,1,3])

print(df)

print('----------')

#默认按“行标签”升序排序

df1 = df.sort_index()

print(df1)

print('-------------')

#按“列标签”降排序

df2 = df.sort_index(axis=1,ascending=False)

print(df2)

b a c

2 1 4 1

0 2 3 3

1 2 2 8

3 3 1 2

----------

b a c

0 2 3 3

1 2 2 8

2 1 4 1

3 3 1 2

-------------

c b a

2 1 1 4

0 3 2 3

1 8 2 2

3 2 3 1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值