纯线性同余随机数生成器
1. 线性同余随机数生成器介绍:
古老的LCG(linear congruential generator)代表了最好最朴素的伪随机数产生器算法。主要原因是容易理解,容易实现,而且速度快。 LCG 算法数学上基于公式: X(n+1) = (a * X(n) + c) % m 其中,各系数为: 模m, m > 0
系数a, 0 < a < m 增量c, 0 <= c < m
原始值(种子) 0 <= X(0) < m
其中参数c, m, a比较敏感,或者说直接影响了伪随机数产生的质量。
一般而言,高LCG的m是2的指数次幂(一般2^32或者2^64),因为这样取模操作截断最右的32或64位就可以了。多数编译器的库中使用了该理论实现其伪随机数发生器rand()。
LCG有一些严重的缺陷,例如如果LCG用做N维空间的点坐标,这些点最多位于m1/n超平面上(Marsaglia定理),这是由于产生的相继X(n)值的关联所致。
另外一个问题就是如果m设置为2的指数,产生的低位序列周期远远小于整体。 一般而言,输出序列的基数b中最低n位,bk = m (k是某个整数),最大周期bn.
有些场合LCG有很好的应用,例如内存很紧张的嵌入式中,电子游戏控制台用的小整数,使用高位可以胜任。
(2)C语言中伪随机数生成方法:rand(),srand(time(null))的解析
C语言中伪随机数生成算法实际上是采用了"线性同余法"。具体的计算如下: Xi = (Xi-1 * A + C ) mod M
其中A,C,M都是常数(一般会取质数)。当C=0时,叫做乘同余法。引出一个概念叫seed,它会被作为X0被代入上式中,然后每次调用rand()函数都会用上一次产生的随机值来生成新的随机值。可以看出实际上用rand()函数生成的是一个递推的序列,一切值都来源于最初的 seed。所以当初始的seed取一样的时候,得到的序列都相同。