图 矩阵 两点间有m的路径 矩阵乘法_代数图论I: 基本理论和无向图的同调

d81ef674a6c776df7dd89db0cd8eb3b2.png

本文内容: 1 图的基本概念 2 无向图的同调理论

1 图的基本概念

首先我们来复习一下图的定义:

[图] 是一个对

, 这里
是一个集合,集合的元素叫做
顶点(vertices), 而
的元素是二元组
,其中
中元素叫做边.为了方便起见,边
通常写为
. 我们说此边连接了
. 在这种情况下,
是相邻顶点。

[图同构] 在图论中,图

是同构的,如果存在顶点集之间的双射
并且使得当且仅当
的任意两个顶点
相邻时,才有
中相邻.

[完全图] 完全图是每两个顶点都相邻的图.

[顶点的度] 顶点

的相邻点点数目称为
的度数, 记为

[子图] 如果图

满足
,则
叫做
子图。 此外,如果
,则
称为
生成子图.

[导出子图]

的非空子集
导出的子图
是这样的图: 它的顶点集为
, 边集为
的边集
中两个顶点均属于
的边的集合。

[距离] 从顶点

出发到顶点
的最短路径若存在,则此路径的长度称作从

的距离。若从
根本不存在路径,则记该距离为

[直径]

中任意两点间的最大距离称为
直径.

[三角] 3个顶点的完全图称为三角.

[邻接矩阵]

的顶点集合为
,那么它的
邻接矩阵
方阵
,使得当从顶点
到顶点
有边时,其元素
为1,否则为

从定义中可以直接得出:
是实对称矩阵,并且
的迹为零.

两个图
具有邻接矩阵
. 图
同构 当且仅当存在置换阵
使得

如果
是图
的邻接矩阵,则矩阵
有一个有趣的解释:元素
给出从顶点
到顶点
的长度
路径的数目.

如果
是使得
的元素
为正的最小非负整数,则
是顶点
之间的距离.

为图且具有
条边和
个三角.
为邻接矩阵, 那么

(1)

(2)

(3)

[特征多项式]

的顶点集合为
的特征值是图不变量。 因此,我们可以将
的特征多项式
定义为

为图且具有
条边和
个三角. 特征多项式为

那么

(1)

(2)

(3)

2 无向图的同调理论

为主理想整区(PID).

[点空间]

为图.
点空间为由
生成的自由
-模, 记为
.

[线空间]

为图. 由
中所有的有向边生成的自由
-模, 记为
.
线空间
为由
模掉关系:
(对
中所有的有向边
) 后生成的
-模.

需注意
为自由模并且与由
生成的自由模同构.

存在唯一一个模同态
,使得
映射为
.

[闭链空间]

为图.
的闭链空间为
.

[图的同调] 对于任何图

,我们可以在主理想整区
上构造一个非常简单的链复形

这个链复形的同调称为图

的同调.

除了
外的所有同调都是0.

对于有
个联通分支的图
我们有

为图,
为它的所有连通分支. 那么对于所有的
成立:

[Betti数] 对于任意

, 图
的第
个 Betti 数定义为

除了第
个 和第
个 外的所有Betti 数都是
.

[Euler 数]

的Euler数为

[对偶模]

是交换环;
-模,那么
的对偶模定义为

每个
-模同态
诱导出
.

[图的上同调] 对于每个图

,都可以定义一个上链复形
定义为
的对偶,即是:

这个上链复形的上同调称为图

的上同调.

如果
连通. 那么

为图,
为它的所有连通分支. 那么对于所有的
成立:

对于任意的
,映射
定义了共变函子

对于任意的
,映射
定义了反变函子

[同调泛系数定理]

为PID而
为平坦
-模的链复形,
-模,令
为由
和边缘算子
决定的链复形,那么对于任意的
有短正合序列

并且分裂.

[上同调泛系数定理]

为自由
-模的链复形,
-模,令
为由
和边缘算子
决定的上链复形,那么对于任意的
有短正合序列

并且分裂.

为环同态,
为图
.
为图在
上的链复形,
为图在
上的链复形. 那么对于所有的
,成立

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值