基于matlab的几何失真矫正,使用imatest软件帮助校正畸变

本文详细介绍了如何利用Imatest软件和MATLAB进行几何失真矫正,特别是径向畸变的校正。通过分析Imatest提供的畸变系数,使用反向变换多项式对图像进行重新采样,从而实现失真校正。文章提供了具体的MATLAB代码示例和实拍图像的校正效果。

Imatest的测试卡和软件可以帮助用户测量和分析成像系统的特性和参数。很多时候,这些测试结果被用来作为图像质量的度量,或者预测你拍摄图像质量的极限水平。

有一些Imatest给出的测试结果,是可以用于图像校正的。可直接用来纠正测量出的误差。不必购买新的硬件,无需主观判断,有时候问题的解决方法可以是一个数学模型和简单的计算。一旦你测量了Imatest的这些参数,你可以纠正他们,从而最大限度地减少(或完全去除)它们造成的影响。这通常是通过一个专用的图像信号处理芯片(ISP)完成的,从原始传感器数据RAW转换成一幅合适的图片。

在Imatest中,我们非正式地称之为“闭环”,它完成了从测试相机到校正相机的循环(某种形式的调整)。

今天,我们要谈谈如何从Imatest中提取径向畸变的测量数据,并用它们来校正相机的畸变(无需购买新的镜头)。

5661b9dc21c27414aea2ec5e592e9b96.png使用Imatest帮助校正畸变

径向几何失真

几何失真,用来的描述图像的扭曲形状,与相机真正遵循一个简单的针孔相机模型成像情况进行对比。(因此,我们不是在这里谈论透视失真)。最明显的效果是,场景中的直线弯曲成图像中的曲线。

几何失真并不总是件坏事——有时也会为艺术效果选择曲线镜头,或使用广角镜头时忽略畸变,因为这就是欣赏者期望看到的情况。然而,用户的研究表明,大多数观众对每天看到的图片的畸变程度,主观接受度是有限的。

特征化(和校正)几何失真是许多应用场景所需要的,比如在三维空间中定位一个点,对于计算机视觉或交多张图像拼接在一起的VR应用等等,都需要精确的校正。

这种几何失真几乎总是由于镜头的设计和结构带来的,它通常被建模为(1)纯径向和(2)径向对称。

纯径向畸变意味着无论在像场中的哪一个点,唯一决定畸变的因素是,它离图像的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值