Imatest的测试卡和软件可以帮助用户测量和分析成像系统的特性和参数。很多时候,这些测试结果被用来作为图像质量的度量,或者预测你拍摄图像质量的极限水平。
有一些Imatest给出的测试结果,是可以用于图像校正的。可直接用来纠正测量出的误差。不必购买新的硬件,无需主观判断,有时候问题的解决方法可以是一个数学模型和简单的计算。一旦你测量了Imatest的这些参数,你可以纠正他们,从而最大限度地减少(或完全去除)它们造成的影响。这通常是通过一个专用的图像信号处理芯片(ISP)完成的,从原始传感器数据RAW转换成一幅合适的图片。
在Imatest中,我们非正式地称之为“闭环”,它完成了从测试相机到校正相机的循环(某种形式的调整)。
今天,我们要谈谈如何从Imatest中提取径向畸变的测量数据,并用它们来校正相机的畸变(无需购买新的镜头)。
使用Imatest帮助校正畸变
径向几何失真
几何失真,用来的描述图像的扭曲形状,与相机真正遵循一个简单的针孔相机模型成像情况进行对比。(因此,我们不是在这里谈论透视失真)。最明显的效果是,场景中的直线弯曲成图像中的曲线。
几何失真并不总是件坏事——有时也会为艺术效果选择曲线镜头,或使用广角镜头时忽略畸变,因为这就是欣赏者期望看到的情况。然而,用户的研究表明,大多数观众对每天看到的图片的畸变程度,主观接受度是有限的。
特征化(和校正)几何失真是许多应用场景所需要的,比如在三维空间中定位一个点,对于计算机视觉或交多张图像拼接在一起的VR应用等等,都需要精确的校正。
这种几何失真几乎总是由于镜头的设计和结构带来的,它通常被建模为(1)纯径向和(2)径向对称。
纯径向畸变意味着无论在像场中的哪一个点,唯一决定畸变的因素是,它离图像的

本文详细介绍了如何利用Imatest软件和MATLAB进行几何失真矫正,特别是径向畸变的校正。通过分析Imatest提供的畸变系数,使用反向变换多项式对图像进行重新采样,从而实现失真校正。文章提供了具体的MATLAB代码示例和实拍图像的校正效果。
最低0.47元/天 解锁文章
2174

被折叠的 条评论
为什么被折叠?



