graphpad7.04多组比较p值_多组比较的非参数检验——K-W检验

本文介绍了Kruskal-Wallis(K-W)检验,作为非参数多组比较的方法,适用于正态分布条件不满足的情况。通过一个关于DON毒素对家兔关节影响的研究案例,解释了如何在小样本研究中使用K-W检验替代方差分析。通过SPSS软件演示了检验步骤,并得出统计学上有显著差异的结论。
摘要由CSDN通过智能技术生成
f8a9c917d72b9338fa9cb42382e8e934.png

作者:丁点helper

来源:丁点帮你

前面我们已经讲完两组比较的非参数检验,类似t检验与方差分析,当比较的数据超过两组时,我们就需要换一个方法了。

非参数K-W检验,相比前文讲解的Mann-Whitney 检验就是这样,我们可以把它理解为“非参数检验的方差分析”。

K-W检验的全称为,Kruskal-Wallis检验,它是用于正态分布条件不满足情况下,多组独立样本方差分析的替代。

案例:

为了解DON(某毒素)对关节的损伤情况,将15只家兔按体重随机分为对照组、低剂量组和高剂量组,分别注射生理盐水、0.05mg/g和0.10mg/g剂量DON毒素进行实验处理。

实验期满后测定关节冲洗液中肿瘤坏死因子(TNF-α)的水平(μg/L),获得数据见下表10-6。现比较3组家兔关节冲洗液TNF-α测定结果是否具有统计学差异?

6ec60dddf9aac8b93fdcb4eb35a84902.png

做医学统计相关的研究,经常会碰到上述这种复杂的专业术语,我们要有化繁为简的能力,仔细看题,我们把“肿瘤坏死因子(TNF-α)”记做“Y”,其实就是一个简单的单因素类方差分析,比较三组的“Y”是否有差异。

因为这里样本量一共只有15(每组5只家兔),属于典型的小样本研究,当样本例数太小时,很难可靠地判断数据的正态性,从而无法使用单因素方差分析进行检验。

因为非参数检验不要求数据的正态性,因此,样本量较少时,可采用更加稳健的Kruskal-Wallis检验进行统计推断。

c462ccd70792936a1d22fd8d60cc4a0e.png

简单而言,Kruskal-Wallis检验的基本思想就是用所有观测值的秩代替原始观测值进行单因素方差分析,其检验统计量为H值:

59743ab5f12f1ef5fc73500157f5b112.png

SPSS的操作步骤及结果截图如下:

8c3a425846bdee5e2bede8589ff0cbbb.png
c46d9a964c7b2a703f6c29636fac5c96.png
020e69c65c805dc19d7df3e83ef4f7ff.png

如上表,P=0.004<0.05,按α=0.05 水准拒绝H0,接受H1,可认为三组家兔关节冲洗液TNF-α测定结果的差异有统计学意义。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值