python均值插补法填补缺失值_python数据分析:缺失值处理

本文介绍了如何使用Python处理数据集中的缺失值,包括数据导入、缺失值识别、意外数据识别、汇总缺失值以及缺失值的均值替换方法。通过实例展示了如何将非标准缺失值转化为标准缺失值,并处理不正确输入数据,帮助读者理解数据清理的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我们拿到的原始数据通常都是一团糟的,缺失值尤其常见,自己在做论文的时候也常常被缺失数据困扰,所以打算写一些如何用python进行缺失值的处理。首先需要大家注意的是,数据的清理很枯燥,但是很重要,根据IBM的研究,数据科学家80%的时间都在做数据清理的工作。本文,我主要写最常见的数据清理任务,即清理缺失值

数据导入

实例数据地址:https ://raw.githubusercontent.com/dataoptimal/posts/master/data%20cleaning%20with%20python%20and%20pandas/property%20data.csv

首先瞅一瞅数据集长啥样

import pandas as pdimport numpy as npdf = pd.read_csv('dataset/property data.csv')df

可以看到这是一个非常迷你的数据集,但是练习缺失值处理肯定够用了。

a8b20f3e711f38d90e5d9952484a18c7.png

缺失数据识别

我们先看ST_NUM和NUM_BEDROOMS这两列,我们知道这个数据集的ST_NUM列有2个缺失,NUM_BEDROOMS这一列应该有3个缺失&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值