.net解析传过来的xml_Matlab编程之——卷积神经网络CNN代码解析

Matlab编程之——卷积神经网络CNN代码解析

卷积神经网络CNN代码解析

deepLearnToolbox-master是一个深度学习matlab包,里面含有很多机器学习算法,如卷积神经网络CNN,深度信念网络DBN,自动编码AutoE

ncoder(堆栈SAE,卷积CAE)的作者是 RasmusBerg Palm

今天给介绍deepLearnToolbox-master中的CNN部分。

  • DeepLearnToolbox-master中CNN内的函数:
197ed8b1c5e1e67fd20468830a90a409.png

该模型使用了mnist的数字mnist_uint8.mat作为训练样本,作为cnn的一个使用样例,每个样本特征为一个28*28=的向量。

  • 网络结构为:
0d7fc7fd2d348235ad8c4a9eda9fbbe9.png

-让我们来分析各个函数:

一、Test_example_CNN

三、cnntrain.m.

四、cnnff.m.

五、cnnbp.m.

五、cnnapplygrads.m.

六、cnntest.m.

一、Test_example_CNN:

1设置CNN的基本参数规格,如卷积、降采样层的数量,卷积核的大小、降采样的降幅

2 cnnsetup函数 初始化卷积核、偏置等

3 cnntrain函数 训练cnn,把训练数据分成batch,然后调用

3.1 cnnff 完成训练的前向过程,

3.2 cnnbp计算并传递神经网络的error,并计算梯度(权重的修改量)

3.3 cnnapplygrads 把计算出来的梯度加到原始模型上去

4 cnntest函数,测试当前模型的准确率

该模型采用的数据为mnist_uint8.mat,

含有70000个手写数字样本其中60000作为训练样本,10000作为测试样本。

把数据转成相应的格式,并归一化。

c48a70a913adf44a177833e778b914cb.png
  • 设置网络结构及训练参数
743190caa8b97e09ea575086e8837183.png
e6037808e8366cd5bda59308669eab08.png
  • 初始化网络,对数据进行批训练,验证模型准确率
c48af70927b20f4644fb866ee5843391.png
  • 绘制均方误差曲线
390b5bf76d26e5ad68b29886df43a5b6.png

二、Cnnsetup.m

该函数你用于初始化CNN的参数。

设置各层的mapsize大小,

初始化卷积层的卷积核、bias

尾部单层感知机的参数设置

bias统一设置为0

权重设置为:-1~1之间的随机数/sqrt(6/(输入神经元数量+输出神经元数量))

对于卷积核权重,输入输出为fan_in, fan_out

fan_out= net.layers{l}.outputmaps * net.layers{l}.kernelsize ^ 2;

%卷积核初始化,1层卷积为16个卷积核,2层卷积一共612=72个卷积核。对于每个卷积输出featuremap,

%fan_in= 表示该层的一个输出map,所对应的所有卷积核,包含的神经元的总数。125,625

fan_in =numInputmaps * net.layers{l}.kernelsize ^ 2;

fin=125 or 625

fout=1625 or 61225

net.layers{l}.k{i}{j} =(rand(net.layers{l}.kernelsize) - 0.5) * 2 * sqrt(6 / (fan_in + fan_out));

1、卷积降采样的参数初始化

b69dd90a2278ee3765a83745929431ce.png
6ddd783c8a486755d22ccd5724838c12.png

2、尾部单层感知机的参数(权重和偏量)设置:

908f7576ecb919d31aed0abfdca1ffce.png

三、cnntrain.m

该函数用于训练CNN。

生成随机序列,每次选取一个batch(50)个样本进行训练。

批训练:计算50个随机样本的梯度,求和之后一次性更新到模型权重中。

在批训练过程中调用:

Cnnff.m 完成前向过程

Cnnbp.m 完成误差传导和梯度计算过程

Cnnapplygrads.m把计算出来的梯度加到原始模型上去

f1b1bb652fe681f5b699978dc49b6cad.png
ad18584443067dc6b52b1e5d61a5bb9b.png

四、cnnff.m

1、取得CNN的输入

d6784542a7352028ecd490c5009f860f.png

2、两次卷积核降采样层处理

061a24530b6dab12a738edf6edd4cfb4.png

3、尾部单层感知机的数据处理,需要把subFeatureMap2连接成为一个(4*4)12=192的向量,但是由于采用了50样本批训练的方法,subFeatureMap2被拼合成为一个19250的特征向量fv;

Fv作为单层感知机的输入,全连接的方式得到输出层

8217d142318228a081251f7c0ec68c1c.png

五、cnnbp.m

该函数实现2部分功能,计算并传递误差,计算梯度

1、计算误差和LossFunction

80395c9b24ed7d70d17977a919805018.png

2、计算尾部单层感知机的误差

b5ddf498e27f8b99c6a5393986e1dac6.png

3、把单层感知机的输入层featureVector的误差矩阵,恢复为subFeatureMap2的4*4二维矩阵形式

e76533a78e4cf609268d59dbdd28bb00.png

插播一张图片:

5effc3139b8398605f3e24baa992ae64.png

4、误差在特征提取网络【卷积降采样层】的传播

如果本层是卷积层,它的误差是从后一层(降采样层)传过来,误差传播实际上是用降采样的反向过程,也就是降采样层的误差复制为2*2=4份。卷积层的输入是经过sigmoid处理的,所以,从降采样层扩充来的误差要经过sigmoid求导处理。

如果本层是降采样层,他的误差是从后一层(卷积层)传过来,误差传播实际是用卷积的反向过程,也就是卷积层的误差,反卷积(卷积核转180度)卷积层的误差,原理参看插图。

5c5062a502d685b80930d365dc89f884.png

5、计算特征抽取层和尾部单层感知机的梯度

09d73a7b733409642d2d48d79785bc03.png

五、cnnapplygrads.m

该函数完成权重修改,更新模型的功能

  1. 更新特征抽取层的权重 weight+bias
  2. 更新末尾单层感知机的权重 weight+bias
2710f6d659c63cac0e2b616bcae97d41.png

六、cnntest.m

验证测试样本的准确率

df338ff45fb6365dd6dbdbbf30fab31e.png

阅读原文参考文献:K码农-http://kmanong.top/kmn/qxw/form/home?top_cate=28

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值