无向图中两点之间的距离_球面两点间的最短距离

为何地图上的航线是曲线

如果我们观察地图上的航线,就会发现航线是弯曲的。

f1821b085ab980ffd3d96a0b5721c989.png

基本上可以认为地球是个球体,如果飞机在两个城市之间飞行,最好的飞行线路是取这两个城市之间的最短距离。这其实课看成球面上任意两点之间的最短距离。过球面上的任意两点以及球心可以做一个截平面,与球面的截痕为一个圆,这个圆的大小不随两点不同而变化,半径都是球半径。这个圆是任意平面与球面相截得到的所有不同的圆中,半径最大的,因此叫做大圆。而只要你沿着球表面做线连接任意两个点,曲线长度最短的一定是这个大圆的劣弧长度。航线按两个城市之间的大圆弧航行才最经济。地图是球面向平面做投影做出来的,所以我们看到的航线就是曲线了。

定理:球面上任意两点间的距离以大圆最短

初等几何的观察

如图AB是连接A,B两点的大圆弧,C是AB弧上的任意一点,过C做以A,B为极点的圆,设AF,GF,GB为一条球面曲线,且BG是大圆弧,AF也是大圆弧

则CB=BG,AC=AF,但AF+FG+GB>AF+GB=AC+CB=AB.

如果B,E,D,A是另外一条球面上的曲线,过B,D,A的球面三角形中AD+BD>AB,

过E,B,A的球面三角形中亦有BE+AE>AB。

132a9fa6686b68dbc026b147acbf30e0.png

微积分证明

下面我们利用球面坐标系与微积分给出一个精确的证明。

令A,B是半径为R的球面上的任意两点,C为球心,大圆弧长可以表达为

74f9bc0b3ffd5416c66841303f3bc9a5.png

以C为中心建立直角坐标系,让A在z轴上,则球面上任意一点P的坐标可以写成:

bb41b70284774b43e930c1bb608562ec.png
12db6aac11b9291d40236309f526b7fd.png

空间中任意曲线的长度可以定义为:

f872f23ee7ff5ebd9161d24934748274.png

其中s是参数,对球面曲线就有

0e2345031f3992d3bcae6a6aa1597cf5.png

所以

64c47a98889d5a2c914d5b13ddb34ea1.png

上式严格成立,也就是要求不论s取值如何都不能离开大圆弧AB时等式严格成立,这就证明了球面上两点的最短距离为大圆弧。这个距离被高斯称为球面测地线。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值