
此类型题目常常出现于填空题最后两个。相对的难度有一些,需要掌握其中套路。
1. 知识点:两点之间线段最短
a) 引申知识点:
i. 三角形两边之和大于第三边
ii. 三角形两边之差小于第三边
2. 知识点: 点关于直线的对称点
i. 关于坐标轴的对称,以及关于和坐标轴平行直线对称
ii. 关于过原点直线的对称,包括y=x,y=-x以及y=kx
iii. 关于形如y=kx+b的一般直线的对称,
1. 知识点:两点之间线段最短。

a) 引申知识点:
i. 三角形两边之和大于第三边。也就是下图中AC+BC的最小值
ii. 三角形两边之差小于第三边。也就是下图中AC-BC的最大值,或者BC-AC的最大值




点关于直线的对称点
i. 关于坐标轴的对称,以及关于和坐标轴平行直线对称
显而易见,对于任意点A(x, y)
关于y轴对称点B (-x,y)
关于x轴对称点C(x, -y)
关于原点对称(或者说是先x轴对称,再y轴对称。反之亦然)D(-x, -y)

而对于和对称轴平行x=a或者y=b来说,主要两种理解方式。
1. 当成一条直线,则对于点A(x, y) 相当于y=b的距离相等,就是x-b=b-x1,x1=2b-x。其他点同理。
2. 相当于坐标系的平移,对于y=b,相对于整个坐标系向右平移b个单位,则反过来,现在的点(x,y)本来是(x-b,y),那么(x-b,y)关于y轴对称点就是(b-x,y),在将(b-x,y)向右平移b个单位就是(2b-x,y)。其他点同理。

ii. 关于过原点直线的对称,包括y=x,y=-x以及y=kx
尺规作图来说,关于某条直线对称的点,就是找三角形。找对称三角形,三角形的两个重合顶点,可以取对称直线上面的任意点。(为了方便,其中一个取坐标原点),两者的交点就是需要的对称点。当然对应y=x,以及y=-x,有其套路。
- (x, y)关于y=x,是(y, x)相当于坐标互换,关于y=-x,是(-y,-x)相当于互换之后在做关于原点的对称点。

2. 关于y=kx对称,如同上面说到的,从几何作图角度将是以原点为圆心做过A点做圆,在对称直线上我们取过点和点关于直线垂足点为圆心。
设点A(x,y),对称点A1(x1,y1)
则点和对称点的连线和对称直线垂直。
点和对称点的中点在对称直线上。

iii. 关于形如y=kx+b的一般直线的对称
关于一般直线y=kx+b对称,上面说到的y=kx其实类似,以与坐标周交点为圆心做过A点做圆,在对称直线上取过点和点关于直线垂足点为圆心。
设点A(x,y),对称点A1(x1,y1)
则点和对称点的连线和对称直线垂直。
点和对称点的中点在对称直线上。

b) 圆的有关性质