python 对ndarray全体除以一个数_[L1]Python-Pandas模块Series

本文详细介绍了Python的Series数据结构,包括Series的定义、创建方式、属性、索引获取、切片、增删改查、过滤、缺失值处理及排序。重点讨论了如何通过索引获取值,如何处理和操作Series中的数据。
摘要由CSDN通过智能技术生成

e4057ddc904c3746293c7a399d58ddda.png

1. 什么是Series?

Series是一种类似于一维数组的对象,与一维数组对象不同的是Series带有标签(索引),通俗来说就是一维带标签(索引)的一维数组。如下图所示:

e9e82404fe3d5fd06b37978ea49cc58f.png
带有索引的一维数组

2. 如何创建Series?

Series是一维带标签(索引)的一维数组,对于Series最关键的也就是索引index和与之对应的value值

一般格式 (这里的data就是value值的集合):
s = pd.Series( data , index )

data几种常见的取值类型:

  1. 标量值、list列表;
  2. ndarray对象;
  3. dict字典;

index取值规范:

  1. 索引值必须是可hashable的(如果一个对象是可散列的,那么在这个对象的生命周期中,他的散列值是不会变的(它需要实现__hash__()方法)),并且索引index的长度必须和value值的长度一致,如果不一致会抛出异常(这点需要格外的注意);
  2. 如果不设置索引,默认索引是从0到n-1的序列值[其中n为data值的长度];
  3. 如果data的类型为dict字典类型,对应的字典中的key值就是对应series对象中的index值;
  4. 相同的索引值也是可以的;

下面依照着data的几种常见的类型来分别介绍,中间会穿插着index的取值规范问题:

2.1 data为标量值、list列表
#data:标量值1
#data:list列表

注意:

  • 当创建Series对象的时候指定index的时候,index元素个数(此处的index为一个list列表)要和data中元素个数相等;
  • 使用相同的索引值"a",程序并没有发生异常,索引值可以是相同的;
2.2 data为ndarray对象
import 

注意:

  • 此时的data是ndarray数组类型,而index分别指定了无参数的默认index索引、指定list列表以及指定ndarray数组类型的index。
2.3 data为dict字典
import 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值