1. 什么是Series?
Series是一种类似于一维数组的对象,与一维数组对象不同的是Series带有标签(索引),通俗来说就是一维带标签(索引)的一维数组。如下图所示:
2. 如何创建Series?
Series是一维带标签(索引)的一维数组,对于Series最关键的也就是索引index和与之对应的value值。
一般格式 (这里的data就是value值的集合):
s = pd.Series( data , index )
data几种常见的取值类型:
- 标量值、list列表;
- ndarray对象;
- dict字典;
index取值规范:
- 索引值必须是可hashable的(如果一个对象是可散列的,那么在这个对象的生命周期中,他的散列值是不会变的(它需要实现__hash__()方法)),并且索引index的长度必须和value值的长度一致,如果不一致会抛出异常(这点需要格外的注意);
- 如果不设置索引,默认索引是从0到n-1的序列值[其中n为data值的长度];
- 如果data的类型为dict字典类型,对应的字典中的key值就是对应series对象中的index值;
- 相同的索引值也是可以的;
下面依照着data的几种常见的类型来分别介绍,中间会穿插着index的取值规范问题:
2.1 data为标量值、list列表
#data:标量值1
#data:list列表
注意:
- 当创建Series对象的时候指定index的时候,index元素个数(此处的index为一个list列表)要和data中元素个数相等;
- 使用相同的索引值"a",程序并没有发生异常,索引值可以是相同的;
2.2 data为ndarray对象
import
注意:
- 此时的data是ndarray数组类型,而index分别指定了无参数的默认index索引、指定list列表以及指定ndarray数组类型的index。
2.3 data为dict字典
import

本文详细介绍了Python的Series数据结构,包括Series的定义、创建方式、属性、索引获取、切片、增删改查、过滤、缺失值处理及排序。重点讨论了如何通过索引获取值,如何处理和操作Series中的数据。
最低0.47元/天 解锁文章

255

被折叠的 条评论
为什么被折叠?



