python 连续比较_python实现连续变量最优分箱详解--CART算法

关于变量分箱主要分为两大类:有监督型和无监督型

对应的分箱方法:

A. 无监督:(1) 等宽 (2) 等频 (3) 聚类

B. 有监督:(1) 卡方分箱法(ChiMerge) (2) ID3、C4.5、CART等单变量决策树算法 (3) 信用评分建模的IV最大化分箱 等

本篇使用python,基于CART算法对连续变量进行最优分箱

由于CART是决策树分类算法,所以相当于是单变量决策树分类。

简单介绍下理论:

CART是二叉树,每次仅进行二元分类,对于连续性变量,方法是依次计算相邻两元素值的中位数,将数据集一分为二,计算该点作为切割点时的基尼值较分割前的基尼值下降程度,每次切分时,选择基尼下降程度最大的点为最优切分点,再将切分后的数据集按同样原则切分,直至终止条件为止。

关于CART分类的终止条件:视实际情况而定,我的案例设置为 a.每个叶子节点的样本量>=总样本量的5% b.内部节点再划分所需的最小样本数>=总样本量的10%

python代码实现:

import pandas as pd

import numpy as np

#读取数据集,至少包含变量和target两列

sample_set = pd.read_excel('/数据样本.xlsx')

def calc_score_median(sample_set, var):

'''

计算相邻评分的中位数,以便进行决策树二元切分

param sample_set: 待切分样本

param var: 分割变量名称

'''

var_list = list(np.unique(sample_set[var]))

var_median_list = []

for i in range(len(var_list) -1):

var_median = (var_list[i] + var_list[i+1]) / 2

var_median_list.append(var_median)

return var_median_list

var表示需要进行分箱的变量名,返回一个样本变量中位数的list

def choose_best_split(sample_set, var, min_sample):

'''

使用CART分类决策树选择最好的样本切分点

返回切分点

param sample_set: 待切分样本

param var: 分割变量名称

param min_sample: 待切分样本的最小样本量(限制条件)

'''

# 根据样本评分计算相邻不同分数的中间值

score_median_list = calc_score_median(sample_set, var)

median_len = len(score_median_list)

sample_cnt = sample_set.shape[0]

sample1_cnt = sum(sample_set['target'])

sample0_cnt = sample_cnt- sample1_cnt

Gini = 1 - np.square(sample1_cnt / sample_cnt) - np.square(sample0_cnt / sample_cnt)

bestGini = 0.0; bestSplit_point = 0.0; bestSplit_position = 0.0

for i in range(median_len):

left = sample_set[sample_set[var] < score_median_list[i]]

right = sample_set[sample_set[var] > score_median_list[i]]

left_cnt = left.shape[0]; right_cnt = right.shape[0]

left1_cnt = sum(left['target']); right1_cnt = sum(right['target'])

left0_cnt = left_cnt - left1_cnt; right0_cnt = right_cnt - right1_cnt

left_ratio = left_cnt / sample_cnt; right_ratio = right_cnt / sample_cnt

if left_cnt < min_sample or right_cnt < min_sample:

continue

Gini_left = 1 - np.square(left1_cnt / left_cnt) - np.square(left0_cnt / left_cnt)

Gini_right = 1 - np.square(right1_cnt / right_cnt) - np.square(right0_cnt / right_cnt)

Gini_temp = Gini - (left_ratio * Gini_left + right_ratio * Gini_right)

if Gini_temp > bestGini:

bestGini = Gini_temp; bestSplit_point = score_median_list[i]

if median_len > 1:

bestSplit_position = i / (median_len - 1)

else:

bestSplit_position = i / median_len

else:

continue

Gini = Gini - bestGini

return bestSplit_point, bestSplit_position

min_sample 参数为最小叶子节点的样本阈值,如果小于该阈值则不进行切分,如前面所述设置为整体样本量的5%

返回的结果我这里只返回了最优分割点,如果需要返回其他的比如GINI值,可以自行添加。

def bining_data_split(sample_set, var, min_sample, split_list):

'''

划分数据找到最优分割点list

param sample_set: 待切分样本

param var: 分割变量名称

param min_sample: 待切分样本的最小样本量(限制条件)

param split_list: 最优分割点list

'''

split, position = choose_best_split(sample_set, var, min_sample)

if split != 0.0:

split_list.append(split)

# 根据分割点划分数据集,继续进行划分

sample_set_left = sample_set[sample_set[var] < split]

sample_set_right = sample_set[sample_set[var] > split]

# 如果左子树样本量超过2倍最小样本量,且分割点不是第一个分割点,则切分左子树

if len(sample_set_left) >= min_sample * 2 and position not in [0.0, 1.0]:

bining_data_split(sample_set_left, var, min_sample, split_list)

else:

None

# 如果右子树样本量超过2倍最小样本量,且分割点不是最后一个分割点,则切分右子树

if len(sample_set_right) >= min_sample * 2 and position not in [0.0, 1.0]:

bining_data_split(sample_set_right, var, min_sample, split_list)

else:

None

split_list 参数是用来保存返回的切分点,每次切分后返回的切分点存入该list

在这里判断切分点分割的左子树和右子树是否满足“内部节点再划分所需的最小样本数>=总样本量的10%”的条件,如果满足则进行递归调用。

def get_bestsplit_list(sample_set, var):

'''

根据分箱得到最优分割点list

param sample_set: 待切分样本

param var: 分割变量名称

'''

# 计算最小样本阈值(终止条件)

min_df = sample_set.shape[0] * 0.05

split_list = []

# 计算第一个和最后一个分割点

bining_data_split(sample_set, var, min_df, split_list)

return split_list

最后整合以下来个函数调用,返回一个分割点list。

可以使用sklearn库的决策树测试一下单变量分类对结果进行验证,在分类方法相同,剪枝条件一致的情况下结果是一致的。

以上这篇python实现连续变量最优分箱详解--CART算法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值