rstudio文件保存_R 和 RStudio 的安装及 R Profile 的配置 & 初识 R 语言数据爬取

更新至 R 4.0.2 版本

R 和 RStudio 的安装是非常简单的,这里提供一些安装 Tips。在文章的最后我还通过一个案例带大家走进奇幻的 R 世界。

视频讲解

该视频较老,但是可以参考~

安装 R

下载页面:https://mirrors.tuna.tsinghua.edu.cn/CRAN/

我安装的 R 语言是 R version 4.0.2 (2020-06-22),该发行版的名字是 Arbor Day

如果你已经安装了 R 和 RStudio,可以运行下面的语句查看自己 R 版本的版本名称:

# 查看自己 R 版本
version$version.string
#> [1] "R version 4.0.2 (2020-06-22)"

# 查看自己 R 版本的名称
version$nickname
#> [1] "Taking Off Again"

根据自己的版本点击下面的链接即可直接下载 R 软件了(使用迅雷下载会很快):

  1. Mac 系统: https://mirrors.tuna.tsinghua.edu.cn/CRAN/bin/macosx/R-4.0.2.pkg
  2. Windows 系统:https://mirrors.tuna.tsinghua.edu.cn/CRAN/bin/windows/base/R-4.0.2-win.exe

下载好之后一路安装即可。(如果你的电脑(Windows系统)是 32 位的,注意选择 32 位的安装)。

Windows 用户:安装 Rtools:Windows 构建工具(Mac 用户请跳过)

只有 Windows 用户需要安装这个工具:https://cran.r-project.org/bin/windows/Rtools/rtools40-x86_64.exe

如果你的电脑是 32 位的,下载这个安装:https://cran.r-project.org/bin/windows/Rtools/rtools40-i686.exe

安装完成之后还需要进行环境变量的配置,稍后我再介绍。

Mac 用户:安装 XQuartz(Windows 用户请跳过)

官网下载(很慢):https://dl.bintray.com/xquartz/downloads/XQuartz-2.7.11.dmg 从我的服务器上下载:https://tidyfriday.cn/assets/XQuartz-2.7.11.dmg

打开终端(Terminal)输入如下命令安装 homebrew:

/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"
# 如果安装失败,可以运行下面的代码安装
/usr/bin/ruby -e "$(curl -fsSL https://tidyfriday.cn/homebrew/install)"

安装 Xcode 工具(在终端运行):

xcode-select --install

安装 pkg-config 和 gdal(一些 R 包的依赖,在终端运行):

brew install pkg-config
brew install gdal

安装 RStudio Desktop(用迅雷下载会很快)

下载页面:https://rstudio.com/products/rstudio/download/

最新版的 RStudio 是 1.3.959 版本的,各个系统的下载链接为(这个建议使用迅雷下载):

  1. Windows 系统:https://download1.rstudio.org/desktop/windows/RStudio-1.3.959.exe
  2. Mac 系统:https://download1.rstudio.org/desktop/macos/RStudio-1.3.959.dmg

注意

一定要先安装 R 再安装 RStudio!

安装常用的一些 R 包

可以运行下面的几句命令快速的安装一些 R 包,如果第一次安装失败,可以尝试把 dependencies = TRUE 参数删除重新运行一次试试。

首先安装 usethis:

# 安装 usethis
install.packages("usethis")

配置 Rtools(仅 Windows 用户需要,Mac 用户请跳过)。

首先打开 RStudio Desktop:

# 运行
usethis::edit_r_environ()
# 在打开的 .Renviron 文件中输入下面的代码(注意不需要运行):
PATH="${RTOOLS40_HOME}\usr\bin;${PATH}"

随后按 Ctrl + S 保存,然后重启 RStudio。

可以检查 make 命令的位置来检查上述配置是否成功:

Sys.which("make")
## "C:\\rtools40\\usr\\bin\\make.exe"

如果没有问题,可以试试安装:

install.packages("jsonlite", type = "source")

如果安装成功了就说明配置成功了。


下面我们继续安装一些 R 包,部分包如果安装失败可以直接跳过,以后需要的时候再安装:

# 安装 devtools 
install.packages("devtools")
# tidyverse 系列的 R 包
install.packages("tidyverse", dependencies = TRUE)
# 安装 tinytex
install.packages("tinytex", dependencies = TRUE)
# 安装完成之后运行
tinytex::install_tinytex()
# 安装一些 RMarkdown 模板
install.packages("rticles", dependencies = TRUE)
install.packages("xaringan", dependencies = TRUE)

# 安装 Shiny
install.packages("shiny", dependencies = TRUE)

# 安装我写的一些 R 包
install.packages("hwordcloud", dependencies = TRUE)
install.packages("hchinamap", dependencies = TRUE)
install.packages("hpackedbubble", dependencies = TRUE)
install.packages("sankeywheel", dependencies = TRUE)

# 安装最近用到的一些 R 包
install.packages("sf", dependencies = TRUE)
install.packages("prettydoc", dependencies = TRUE)
install.packages("hrbrthemes", dependencies = TRUE)
install.packages("tmap", dependencies = TRUE)
install.packages('patchwork', dependencies = TRUE)
install.packages('manipulateWidget', dependencies = TRUE)
install.packages('ggthemes', dependencies = TRUE)
install.packages('tidyquant', dependencies = TRUE)
install.packages('rvest', dependencies = TRUE)
install.packages('DT', dependencies = TRUE)
install.packages("basetheme", dependencies = TRUE)
install.packages("pacman", dependencies = TRUE)
# 这些包是从我的服务器上安装的,如果安装失败就多试几次
install.packages("https://tidyfriday.cn/pkg/ggchicklet_0.5.2.tar.gz", repos = NULL, type = "source")
install.packages("https://tidyfriday.cn/pkg/awtools_0.2.1.tar.gz", repos = NULL, type = "source")
install.packages("https://tidyfriday.cn/pkg/ggrapid_0.0.1.0.tar.gz", repos = NULL, type = "source")
install.packages("https://tidyfriday.cn/pkg/worldtilegrid_0.2.0.tar.gz", repos = NULL, type = "source")
install.packages("https://tidyfriday.cn/pkg/ggtext_0.1.0.tar.gz", repos = NULL, type = "source")

用一段时间之后你的电脑上就会安装一大堆 R 包,例如我电脑上安装的 R 包有 1880个(截止 2020年6月26号)。

library(tidyverse)
installed.packages() %>% 
  as_tibble() %>% 
  count() %>% 
  pull() %>% 
  paste("该电脑一共有", ., "个 R 包!") %>% 
  message()
#> 该电脑一共有 1880 个 R 包!

完整的名单(仅供参考):

installed.packages() %>% 
  as_tibble() %>% 
  select(Package, Version, License, Built) %>% 
  DT::datatable()

03c19c4a724d5baf0cdf65e94581c60c.png

安装字体

可以从知识星球上下载我电脑上安装的一些字体,链接:https://t.zsxq.com/3J6uBA6

解压后全选双击全部安装即可。

设置 R Profile

R Profile 里面的代码会在启动 R 的时候自动运行,创建 R Profile 文件可以使用:

usethis::edit_r_profile()

运行之后自动会打开一个文件,在里面输入你想要在 R 启动的时候自动运行的代码即可,可以参考我的:

里面的字体设置非常重要,大家不要直接照搬这里的代码,要掌握里面字体设置的方法。关于 Windows 电脑的字体设置可以点击:https://t.zsxq.com/AQFUbau 跳转到知识星球学习。

Windows 系统:

# 加载包
pacman::p_load(ggplot2, dplyr, RColorBrewer, hrbrthemes, grDevices)

# 设定字体,特别注意里面有一个 enfont 和 cnfont 是我最常用的两个字体。
windowsFonts(
  `Arial Narrow` = windowsFont("Arial Unicode MS"),
  `enfont` = windowsFont("Cascadia Code"),
  `cnfont` = windowsFont("宋体"),
  EconSansCndReg = windowsFont("Econ Sans Cnd"),
  IBMPlexSans = windowsFont("IBM Plex Mono"),
  IBMPlexSans = windowsFont("IBM Plex Sans"),
  `Public Sans` = windowsFont("Public Sans"),
  `Roboto Condensed` = windowsFont("Roboto Condensed"),
  `Roboto Slab` = windowsFont("Roboto Slab"),
  `Titillium Web` = windowsFont("Titillium Web")
)
enfont = "enfont"
cnfont = "cnfont"

# 设定 ggplot2 绘图主题
theme_set(theme_ipsum(base_family = 'cnfont'))

# 这是设定 R 的基础绘图系统的绘图主题
library(basetheme)
pars "default")
pars$palette "#2A363B", "#019875", "#99B898", "#FECEA8", "#FF847C", "#E84A5F", "#C0392B", "#96281B")
pars$bg  "white"
pars$fg  "gray20"
pars$col "gray20"
pars$col.main "black"
pars$col.axis "gray20"
pars$col.lab  "gray20"
pars$family   "cnfont"
pars$lab      10, 10, 7)
pars$cex.axis 0.8
pars$las      0
pars$rect.border "black"
pars$rect.lwd    4
basetheme(pars)

# 取消科学计数法的显示
options(scipen = 1)

# 设定 ggplot2 的默认调色板
options(
  ggplot2.continuous.colour = "viridis",
  ggplot2.continuous.fill = "viridis"
)

Mac 系统参考:

# 加载包
pacman::p_load(ggplot2, dplyr, RColorBrewer, hrbrthemes)
print("已加载 ggplot2、reshape2、dplyr、hrbrthemes 和 RColorBrewer!")

# 为了以后方便以后调用这些字体,我把我喜欢用的一些字体存储成一些简单的单词。
enfont = "CascadiaCode-Regular"
cnfont = "SourceHanSerifSC-Medium"

# 设定 ggplot2 绘图主题
theme_set(theme_ipsum(base_family = cnfont))
print("已 ggplot2 绘图主题为 theme_ipsum()!")

# 这是设定 R 的基础绘图系统的绘图主题
library(basetheme)
pars "default")
pars$palette "#2A363B", "#019875", "#99B898", "#FECEA8", "#FF847C", "#E84A5F", "#C0392B", "#96281B")
pars$bg  "white"
pars$fg  "gray20"
pars$col "gray20"
pars$col.main "black"
pars$col.axis "gray20"
pars$col.lab  "gray20"
pars$family   pars$lab      10,10,7)
pars$cex.axis 0.8
pars$las      0
pars$rect.border "black"
pars$rect.lwd    4
basetheme(pars)

# 取消科学计数法的显示
options(scipen = 1)

# 设定 ggplot2 的默认调色板
options(
  ggplot2.continuous.colour = "viridis",
  ggplot2.continuous.fill = "viridis"
)

注意上面的 pars$family 里面的字体应该使用你设置好的字体。

这样设定好之后再重启 R 即可生效。

基于这种设定,使用 R 基础绘图系统绘图的结果将会是这样的:

hist(iris$Sepal.Length)
e58dde9a5a4382fce9df9dfa5dcb6320.png

使用 ggplot2 绘图的结果是这样的:

library(ggplot2)
ggplot(iris) + 
  geom_col(aes(x = Sepal.Length, 
               y = Sepal.Width,
               fill = Species,
               color = Species)) + 
  tidyquant::scale_fill_tq() + 
  tidyquant::scale_color_tq()
9deacd2e4988ced60b115609bd4036db.png

设置 RStudio 的样式

我比较喜欢暗黑一些的样式,在 Console 运行下面的代码即可更换为我推荐的主题:Mojave-Dark-RStudio-Theme

rstudioapi::addTheme("https://tidyfriday.cn/assets/Mojave%20Dark%20(Static).rstheme", apply = TRUE, force = TRUE)

这个主题是这样的:

a051b3a33923c214f30950ecb92e9143.png

一个小的练习:爬取 CRAN 上的所有 R 包的名称、发布日期和标题

大家可以先不用急着理解下面的代码。只想想通过下面的案例让大家感受 R 语言的语法逻辑和绘图的精美。

可以爬清华镜像源的列表:https://mirrors.tuna.tsinghua.edu.cn/CRAN/web/packages/available_packages_by_date.html

显然,这是个表格,很容易爬取:

library(rvest)
library(tidyverse)
# lubridate 是处理日期的一个 R 包
library(lubridate)
library(hrbrthemes)

# 需要耐心地等待一会儿
pkg "https://mirrors.tuna.tsinghua.edu.cn/CRAN/web/packages/available_packages_by_date.html" %>% 
  read_html() %>% 
  html_table() %>% 
  .[[1]] %>% 
  as_tibble() %>% 
  mutate(
    Date = ymd(Date),
    Year = year(Date),
    Month = month(Date)
  )

library(ggchicklet)
pkg %>% 
  group_by(Year, Month) %>% 
  count() %>% 
  ggplot(aes(x = factor(Year), y = n)) + 
  geom_chicklet(aes(fill = factor(Month)),
                width = 0.75, 
                radius = grid::unit(3, "pt")) + 
  theme_ipsum(base_family = enfont,
              grid = "X") + 
  coord_flip() + 
  scale_fill_brewer(name = "Month",
                    palette = "Paired",
                    breaks = 1:12,
                    labels = month.name) + 
  theme(axis.text.x = element_text(color = "gray60", 
                                   size = 10)) +
  theme(legend.position = "right") + 
  guides(fill = guide_legend(ncol = 1)) + 
  labs(
    title = "Number of R packages on CRAN",
    subtitle = "Created by TidyFriday @ tidyfriday.cn",
    caption = "Data Source: \nhttps://mirrors.tuna.tsinghua.edu.cn/CRAN/",
    x = "",
    y = "")
c87a8314c538b53374bd85bc08e497ec.png

按年统计:

pkg %>% 
  group_by(Year) %>% 
  count() %>% 
  ggplot() + 
  geom_chicklet(aes(x = factor(Year), y = n,
                    fill = factor(Year))) + 
  geom_label(aes(x = factor(Year),
                 y = n + 200,
                 label = n),
             family = enfont,
             color = '#444444', 
             label.size = 0, 
             size = 3) +
  scale_fill_manual(
    values = c(RColorBrewer::brewer.pal(5, "Paired"), 
               RColorBrewer::brewer.pal(10, "Paired"))
  ) + 
  theme_ipsum(base_family = enfont) + 
  theme(legend.position = "none") + 
  labs(
    title = "Number of R packages on CRAN",
    subtitle = "Created by TidyFriday @ tidyfriday.cn",
    caption = "Data Source: \nhttps://mirrors.tuna.tsinghua.edu.cn/CRAN/",
    x = "",
    y = "")
e97b153ce985e2e0053d3bbe4efcf181.png

可以看到,今年截止到今天,CRAN 上一共有 15888 个 R 包,今年新发布的 + 更新的有 5225 个!

注意

上文中的 Windows 系统的安装和配置未经测试,有问题可以联系我(需要加入我的线上培训班才能向我提问哦~)

福利

为了让大家更快熟悉 RStudio 这个 IDE(集成开发环境),我给大家提供了一份 RStudio 的速查表。

在公众号后台回复 rstudio 即可获取~

? 线上培训班体验邀请

欢迎加入我的线上培训班学习使用 R 和 Stata 进行数据处理和可视化:你想学习使用 R & Stata 进行数据分析与可视化么?我觉得你可以加入我的线上培训班试试!

之后的课程将不再通过哔哩哔哩直播进行,那么该如何试听我的培训班的课程呢?很简单:

  1. 关注本公众号 RStata,这样你能够第一时间获取课程预告和我提供的学习资源;
  2. 转发本文至朋友圈集齐 12 个赞;
  3. 截图发给我,我就邀请你加入会员群进行体验(两天),期间你可以参与腾讯会议观看课程直播和进行提问。

我的微信

更多内容欢迎加入我的线上培训班获取,详情可添加我的微信咨询了解:

参加线上培训班请注明“走天涯徐小洋”的粉丝,有粉丝专属优惠哦!

eb1b5b8216a132d1a0bae2dea7c6b73e.png

非诚勿扰。

推荐阅读

  • 【Stata 编程导论】第三讲:函数、宏、标量和矩阵(二)
  • 函数、宏、标量和矩阵(一)
  • 【使用 R 语言进行地理计算】第二讲:属性数据操作
  • 为小白准备的课程~ 《Stata 绘图指引》系列课程第二讲:Stata 的图形编辑器
  • 指北针和比例尺来啦!使用 Stata 绘制中国市级地图~还带九段线小地图
  • 《R 数据科学》系列课程第二讲:使用 ggplot2 进行数据可视化
  • 上手 Stata 图表制作
  • 入手 R 语言!
  • 入手 Stata
  • Stata 网络数据爬取:JSON 篇
  • 使用 R 语言从 PDF 文档中提取表格
  • 如何根据经纬度判断该地点所处的省份或者区县?(更新版)
  • 如何在几秒钟内完成 Stata 外部命令的安装?
  • 中国的工业企业都在哪里?—— Stata、高德接口与地理编码
  • 0
    点赞
  • 11
    收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值