rstudio文件保存_R 和 RStudio 的安装及 R Profile 的配置 & 初识 R 语言数据爬取

更新至 R 4.0.2 版本

R 和 RStudio 的安装是非常简单的,这里提供一些安装 Tips。在文章的最后我还通过一个案例带大家走进奇幻的 R 世界。

视频讲解

该视频较老,但是可以参考~

安装 R

下载页面:https://mirrors.tuna.tsinghua.edu.cn/CRAN/

我安装的 R 语言是 R version 4.0.2 (2020-06-22),该发行版的名字是 Arbor Day

如果你已经安装了 R 和 RStudio,可以运行下面的语句查看自己 R 版本的版本名称:

# 查看自己 R 版本
version$version.string
#> [1] "R version 4.0.2 (2020-06-22)"

# 查看自己 R 版本的名称
version$nickname
#> [1] "Taking Off Again"

根据自己的版本点击下面的链接即可直接下载 R 软件了(使用迅雷下载会很快):

  1. Mac 系统: https://mirrors.tuna.tsinghua.edu.cn/CRAN/bin/macosx/R-4.0.2.pkg
  2. Windows 系统:https://mirrors.tuna.tsinghua.edu.cn/CRAN/bin/windows/base/R-4.0.2-win.exe

下载好之后一路安装即可。(如果你的电脑(Windows系统)是 32 位的,注意选择 32 位的安装)。

Windows 用户:安装 Rtools:Windows 构建工具(Mac 用户请跳过)

只有 Windows 用户需要安装这个工具:https://cran.r-project.org/bin/windows/Rtools/rtools40-x86_64.exe

如果你的电脑是 32 位的,下载这个安装:https://cran.r-project.org/bin/windows/Rtools/rtools40-i686.exe

安装完成之后还需要进行环境变量的配置,稍后我再介绍。

Mac 用户:安装 XQuartz(Windows 用户请跳过)

官网下载(很慢):https://dl.bintray.com/xquartz/downloads/XQuartz-2.7.11.dmg 从我的服务器上下载:https://tidyfriday.cn/assets/XQuartz-2.7.11.dmg

打开终端(Terminal)输入如下命令安装 homebrew:

/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"
# 如果安装失败,可以运行下面的代码安装
/usr/bin/ruby -e "$(curl -fsSL https://tidyfriday.cn/homebrew/install)"

安装 Xcode 工具(在终端运行):

xcode-select --install

安装 pkg-config 和 gdal(一些 R 包的依赖,在终端运行):

brew install pkg-config
brew install gdal

安装 RStudio Desktop(用迅雷下载会很快)

下载页面:https://rstudio.com/products/rstudio/download/

最新版的 RStudio 是 1.3.959 版本的,各个系统的下载链接为(这个建议使用迅雷下载):

  1. Windows 系统:https://download1.rstudio.org/desktop/windows/RStudio-1.3.959.exe
  2. Mac 系统:https://download1.rstudio.org/desktop/macos/RStudio-1.3.959.dmg

注意

一定要先安装 R 再安装 RStudio!

安装常用的一些 R 包

可以运行下面的几句命令快速的安装一些 R 包,如果第一次安装失败,可以尝试把 dependencies = TRUE 参数删除重新运行一次试试。

首先安装 usethis:

# 安装 usethis
install.packages("usethis")

配置 Rtools(仅 Windows 用户需要,Mac 用户请跳过)。

首先打开 RStudio Desktop:

# 运行
usethis::edit_r_environ()
# 在打开的 .Renviron 文件中输入下面的代码(注意不需要运行):
PATH=&
  • 1
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
要在Python中实现追踪视频中的汉字笔画,可以使用OpenCV库进行视频处理,使用Pillow库进行图像处理,使用中文手写字体库进行汉字显示。 首先,安装必要的库: ```python pip install opencv-python pip install pillow pip install cnfonts ``` 然后,导入所需库: ```python import cv2 from PIL import Image, ImageDraw, ImageFont from cnfonts import CNFont ``` 接下来,读取视频文件并创建窗口: ```python cap = cv2.VideoCapture('video.mp4') cv2.namedWindow('video', cv2.WINDOW_NORMAL) ``` 然后,定义一个函数来获取汉字的笔画信息: ```python def get_strokes(ch): font = ImageFont.truetype(CNFont().font_path, 100) img = Image.new("RGB", (100, 100), (255, 255, 255)) draw = ImageDraw.Draw(img) draw.text((0, 0), ch, font=font, fill=(0, 0, 0)) img = img.convert('1') return img.getcolors() ``` 该函数使用cnfonts库中的中文手写字体来生成一个100x100像素的黑白图像,并使用ImageDraw库在图像上绘制汉字。然后,将图像转换为黑白图像,并使用getcolors方法返回所有的像素颜色及其计数。 接下来,使用OpenCV库读取每一帧视频,并在新的窗口中显示: ```python while(cap.isOpened()): ret, frame = cap.read() if ret==True: cv2.imshow('video',frame) if cv2.waitKey(25) & 0xFF == ord('q'): break else: break ``` 在每一帧视频中,我们可以使用Pillow库来获取汉字的笔画信息,并在新的窗口中显示: ```python strokes = get_strokes('你') print(strokes) img = Image.new("RGB", (100, 100), (255, 255, 255)) draw = ImageDraw.Draw(img) draw.text((0, 0), '你', font=font, fill=(0, 0, 0)) img.show() ``` 这将显示一个100x100像素的黑白图像,显示汉字“你”的笔画信息。 最后,将汉字的笔画信息与视频中的每一帧进行匹配,并在新的窗口中显示: ```python for stroke in strokes: color, count = stroke for i in range(count): x, y = np.where(frame[:,:,0] == color[0]) if len(x) > 0: x = x[0] y = y[0] cv2.circle(frame, (y,x), 4, (0,0,255), -1) cv2.imshow('video',frame) if cv2.waitKey(25) & 0xFF == ord('q'): break ``` 该代码将遍历汉字的每一个笔画,并在视频中查找与该笔画相匹配的像素颜色。如果找到匹配的像素,将在该像素位置上绘制一个红色圆圈。最终,每一帧视频都将显示在新的窗口中,并显示汉字的笔画轨迹。 完整代码如下: ```python import cv2 import numpy as np from PIL import Image, ImageDraw, ImageFont from cnfonts import CNFont def get_strokes(ch): font = ImageFont.truetype(CNFont().font_path, 100) img = Image.new("RGB", (100, 100), (255, 255, 255)) draw = ImageDraw.Draw(img) draw.text((0, 0), ch, font=font, fill=(0, 0, 0)) img = img.convert('1') return img.getcolors() cap = cv2.VideoCapture('video.mp4') cv2.namedWindow('video', cv2.WINDOW_NORMAL) while(cap.isOpened()): ret, frame = cap.read() if ret==True: for stroke in strokes: color, count = stroke for i in range(count): x, y = np.where(frame[:,:,0] == color[0]) if len(x) > 0: x = x[0] y = y[0] cv2.circle(frame, (y,x), 4, (0,0,255), -1) cv2.imshow('video',frame) if cv2.waitKey(25) & 0xFF == ord('q'): break else: break cap.release() cv2.destroyAllWindows() ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值