小Hub领读:
继续我们的eblog,今天来完成博客的搜索引擎,数据同步,后台精选哈!
项目名称:eblog
项目 Git 仓库:https://github.com/MarkerHub/eblog(给个 star 支持哈)
项目演示地址:https://markerhub.com:8082
前几篇项目讲解文章:
1、(eblog)Github 上最值得学习的 Springboot 开源博客项目!
2、(eblog)小 Hub 手把手教你如何从 0 搭建一个开源项目架构
3、(eblog)整合Redis,以及项目优雅的异常处理与返回结果封装
4、(eblog)用Redis的zset有序集合实现一个本周热议功能
5、(eblog)自定义Freemaker标签实现博客首页数据填充
6、(eblog)博客分类填充、登录注册逻辑
7、(eblog)博客发布收藏、用户中心的设置
8、(eblog)消息异步通知、细节调整
搜索功能
原本我还想拆分成spring cloud项目的,不过博客项目的业务实在是少,没啥必要拆分,而我们之前二期作业已经拆分过项目了,所以想要学习spring cloud的同学可以去看看二期作业,那么这期作业我们就直接搞成springboot项目不拆分模块了。
搜索功能-ES
结合我们学习过的内容,我们之前学习搜索引擎,学过lucene还有elasticsearch,lucene比较适合单体项目,不适合分布式。
这次搜索我们用的是es,es与数据库之间的内容同步我们用的是RabbitMq进行一步同步。下面我们一一来实现这些功能。
首先我们来分析一下我们要开发的功能。
搜索功能
es数据初始化
es与数据库的异步同步功能
集成elasticsearch的方式有很多,
比较原生的TransportClient client
spring提供的ElasticsearchTemplate
spring jpa提供的ElasticsearchRepository
其中使用ElasticsearchRepository应该是开发量最小的一种方式,使用template或者TransportClient client方式可能会更灵活。
我们之前有学过spring data jpa,一种可以按照命名规则就可以查库的方式,在搜索单表时候特别方便。
这次开发,我们使用ElasticsearchRepository的方式,当然,引入了这个包之后,你也可以使用ElasticsearchTemplate来开发。spring都会自动帮你注入生成。
我们之前按照的es版本是elasticsearch-6.4.3.tar.gz。所以我们选择引入包的使用最好也使用对应版本的。
在maven仓库上搜索一下对应的包版本,发现前面的几个基本都可以满足要求。我们这里就选用最新的2.1.1.RELEASE版本。
除了es,我们还需要引入feign、rabbitmq等包,等下我们需要用到。这里我先统一给出一下。
org.springframework.boot
spring-boot-starter-data-elasticsearch
2.1.1.RELEASE
org.springframework.boot
spring-boot-starter-amqp
org.modelmapper
modelmapper
1.1.0
es和mq的安装我们课程上有介绍过,同学们可以去回顾一下,或者多看一下我们社区文档即可完成部署。
6.4.3版本的下载地址:https://www.elastic.co/cn/downloads/past-releases/elasticsearch-6-4-3
业务分析
我们再来分析一下,因为我们已经决定了选用ElasticsearchRepository方式来访问我们的elasticsearch,所以按照这个思路,我们需要准备一个model、一个repository,这是访问存储介质es的基础,新建repository很简单,因为是spring data jpa,所以直接继承ElasticsearchRepository就可以了:
com.example.search.repository.PostRepository
@Repository
public interface PostRepository extends ElasticsearchRepository<PostDocument, Long> {
}
那model的内容是啥呢?我们来看看前端搜索列表,列表需要啥数据,我们就存啥数据就行。我们使用了搜索引擎,那么搜索的结果最好就不用再需要经过我们的数据库查询,这样我们就能直接把搜索的结果直接返回给前端显示。从而提升搜索的速度。比如我们看数据列表显示。在这里我们可以看到,需要标题,作者名称,作者id、创建时间,阅读数量等等。
新建一个类PostDocment放在model包下。其实基本和我们的postVo差不多就行了。
@Document(indexName = "post", type = "post")
@Data
public class PostDocument implements Serializable {
@Id
private Long id;
// 中文分词器 -> https://github.com/medcl/elasticsearch-analysis-ik
@Field(type = FieldType.Text, analyzer = "ik_max_word", searchAnalyzer = "ik_smart")
private String title;
// @Field(type = FieldType.Text, analyzer = "ik_max_word", searchAnalyzer = "ik_smart")
// private String content;
private Long authorId;
@Field(type = FieldType.Keyword)
private String authorName;
private String authorVip;
private String authorAvatar;
private Long categoryId;
@Field(type = FieldType.Keyword)
private String categoryName;
private Boolean recommend;
private Integer level;
@Field(type = FieldType.Text)
private String tags;
private Integer commentCount;
private Integer viewCount;
@Field(type = FieldType.Date)
private Date created;
}
这里我整理了一下所需要的字段。然后需要用上一下jpa的注解。FieldType.Text表示是文本,需要经过分词(这里我们先不讲分词,后面再说)。FieldType.Keyword则需要完全匹配的才行。
这里我把标题和简介用文本搜索,作者和分类则需要完全匹配才能搜索出来。analyzer = "ikmaxword"是关于分词器的,后面我们会讲到。
有了这个实体之后,es会自动帮我们新建数据索引结构。我们就可以使用PostRepository来增删改查我们的es数据了。
接下来我们新建一个搜索search的方法,因为需要分页,所以page、size参数是必要的。然后还有keyword参数。就是对keyword进行查询并分页返回结果。
代码如下:
com.example.controller.IndexController
@RequestMapping("/search")
public String search(@RequestParam(defaultValue = "1") Integer current,
@RequestParam(defaultValue = "10")Integer size,
String q) {
Pageable pageable = PageRequest.of(current - 1, size);
Page<PostDocument> documents = searchService.query(pageable, q);
IPage pageData = new com.baomidou.mybatisplus.extension.plugins.pagination.Page
(current, size, documents.getTotalElements());
pageData.setRecords(documents.getContent());
req.setAttribute("pageData", pageData);
req.setAttribute("q", q);
return "search";
}
首先我们拼成data jpa的分页封装Pageable,最后得到的Page对象也是jpa的,但是我们因为我们返回的选项是mybatis plus的,所以做了一层转换。最后得到pageData。这里面主要的方法就是这个查询方法searchService.query。
新建SearchService接口和实现类,query方法的查询其实很简单,因为这里我们只有一个关键字查询,没有涉及其他很多复杂查询,所以我们先简单实现,后面我们涉及到权重、分词等问题时候我们可以再调整一下。
搜索的逻辑是,让关键字分别和我需要查询的字段进行多匹配,只要其中一个字段匹配上我们就命中。多字段匹配我们可以使用MultiMatchQueryBuilder来构建。至于字段的名称,我写了一个IndexKey。因为搜索不仅仅是搜索标题,还需要搜索作者名称,分类名称等信息,用or关联起来得到最后的结果
com.example.search.common.IndexKey
/**
* 索引名称
*/
public class IndexKey {
public static final String POST_TITLE = "title";
public static final String POST_DESCRIPTION = "content";
public static final String POST_AUTHOR = "authorName";
public static final String POST_CATEGORY = "categoryName";
public static final String POST_TAGS = "tags";
}
以上这些都是我需要搜索的字段。构建了多字段匹配之后,我们用NativeSearchQueryBuilder 整合起来,并进行分页,得到一个SearchQuery结果,然后我们就可以使用postRepository.search(searchQuery);来得到我们需要的分页结果了,是不是感觉挺简单的哈。关于spring data jpa的复杂查询语法,大家回去看看我们的jpa的课程内容。熟悉一下:
com.example.service.impl.SearchServiceImpl
@Override
public Page<PostDocument> query(Pageable pageable, String keyword) {
//多个字段匹配,只要满足一个即可返回结果
MultiMatchQueryBuilder multiMatchQueryBuilder = QueryBuilders.multiMatchQuery(keyword,
IndexKey.POST_TITLE,
IndexKey.POST_DESCRIPTION,
IndexKey.POST_AUTHOR,
IndexKey.POST_CATEGORY,
IndexKey.POST_TAGS
);
SearchQuery searchQuery = new NativeSearchQueryBuilder()
.withQuery(multiMatchQueryBuilder)
.withPageable(pageable)
.build();
Page<PostDocument> page = postRepository.search(searchQuery);
log.info("查询 - {} - 的得到结果如下-------------> {}个查询结果,一共{}页",
keyword, page.getTotalElements(), page.getTotalPages());
return page;
}
multiMatchQuery支持对多个字段进行匹配。这样我们查询关键字的时候,就回去查询这些字段:title、author、category等。最后是构建SearchQuery,并 使用repository查询接口。这样我们就可以实现es的查询功能啦,虽然还没有数据。然后我们来调整一下前端,找到前端的js
中文分词
刚刚我们做了一个搜索功能,但是es的搜索分词是使用默认的标准分词器,我们都知道分词是es很重要的部分,搜索智能不智能就看分词好不好,分词效果好的话搜索出来的结果越精确。
现在我们来给es安装中文IK分词器。我在github上找了个还不错的ik分词器
https://github.com/medcl/elasticsearch-analysis-ik
使用分词器的方法很简单,在安装分词器之前,我们先来测试一下没安装之前的分词效果,和分词之后的分词效果。
使用postman来测试。首先测试默认情况下的标准分词器。
http://47.106.38.101:9200/post/_analyze
Headers Content-Type: application/json
Method POST
Body
{
"text":"美国留给伊拉克的是个烂摊子吗",
}
测试结果如下如:
可以看到默认的标准分词器并不认识我们中文,只是简单把每个字分开而已。这样的分词会给搜索结果带来很大的不准确性。
那么接下来我们安装一下刚才说的IK分词器。根据ReadMe的说明。安装的方法有两个,这里我们采用第二种:optional 2 - use elasticsearch-plugin to install ( supported from version v5.5.1 ):
./bin/elasticsearch-plugin install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v6.3.0/elasticsearch-analysis-ik-6.3.0.zip
上面是使用elasticsearch-plugin命令来安装插件,也给出了NOTE给我们要注意替换版本号。因为我安装的es版本是6.4.3,所以直接替换上面的两个6.3.0。然后直接进入es安装目录执行即可安装成功了。
./bin/elasticsearch-plugin install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v6.4.3/elasticsearch-analysis-ik-6.4.3.zip
安装成功之后注意重启一下es,直接kill进程,然后重启就行。重启之后自己可以根据给出的命令来测试一下。这里我继续刚才的测试。在body的json中添加analyzer,然后测试:
{
"text":"美国留给伊拉克的是个烂摊子吗",
"analyzer": "ik_smart"
}
测试结果:
可以看到分词结果明显不同了。IK分词给出了两种 iksmart** , **ikmax_word。两者区别在于
ik_smart* *会将文本做最细粒度的拆分
*ik_max_word *会做最粗粒度的拆分
可以自己动手观察一下结果。https://blog.csdn.net/weixin_44062339/article/details/85006948
以下是我测试用的postman实例。大家可以自己导进去测试一下:
elasticsearch-test.postman_collection.json
安装成功了之后我们就可以在我们代码里面加入我们的分词器了。代码改动很小,我们只需要在PostDocment实体的字段上加上注解属性analyzer和searchAnalyzer。analyzer是保存时候分词,这里我使用ikmaxword ,这样可以搜索的词语更多。searchAnalyzer表示搜索时候的分词,我只用ik_smart,挑关键词语搜索。这里大家可以查看搜索结果来调整。
删除之前的索引,然后重启hw-search项目,查看索引信息里面可以看到,description和title已经有了分词器(elasticsearch-head)。
以上,我们就完成了中文分词效果。
初始同步
我们已经完成了es搜索引擎的查询功能,但是现在还没有数据,初始化数据的话我们可以批量查询数据库然后插入到es中,比较普遍也比较简单的方式:
这个数据同步的操作我们放在后台管理中,只能超级管理员有权限操作,所以我们新建一个AdminController,然后/admin开头,然后在shiro中,我们需要拦截这个admin开头的链接,需要admin角色权限才有权限操作。
com.example.config.ShiroConfig
hashMap.put("/admin/**", "auth, roles[admin]");
然后我们看看controller
com.example.controller.AdminController
@Controller
@RequestMapping("/admin")
public class AdminController extends BaseController {
@Autowired
SearchService searchService;
@ResponseBody
@PostMapping("/initEsData")
public Result initEsData() {
int total = 0;
int size = 10000;
Page page = new Page<>();
for(int i = 1; i < 1000; i ++) {
page.setCurrent(i);
page.setSize(size);
IPage<PostVo> paging = postService.paging(page, null, null, null, null, "created");
int num = searchService.initEsIndex(paging.getRecords());
total += num;
if(num < size) {
break;
}
}
return Result.succ("ES索引库初始化成功!共" + total + "条记录", null);
}
}
上面的逻辑其实很简单,就是批量查询出数据让,然后保存到es中,当查询出来的数量比每页数量少时候说明已经是最后一页了,这时候break结束。searchService.initEsIndex是比较关键的逻辑,其实就是把PostVo映射成PostDocment,然后就可以使用repository保存了。
com.example.service.impl.SearchServiceImpl
@Override
public int initEsIndex(List<PostVo> datas) {
if(datas == null || datas.isEmpty()) return 0;
List<PostDocument> docs = new ArrayList<>();
for(PostVo vo : datas) {
PostDocument doc = modelMapper.map(vo, PostDocument.class);
docs.add(doc);
}
//批量保存
postRepository.saveAll(docs);
return docs.size();
}
然后现在我们得到一个链接就是/admin/initEsData,这个按钮在哪里发起呢,因为我们现在没有后台,所以把这个管理员操作放在了用户中心的基本设置中,添加了一个新的tab(管理中心),里面有个按钮就是同步ES,点击按钮就会发起form表单提交。
具体代码:
templates/center/setting.ftl
class="layui-form layui-form-pane layui-tab-item">
method="post" action="${base}/admin/initEsData">
class="layui-btn" key="set-mine" lay-filter="*" lay-submit alert="true">同步ES
@shiro.hasRole>
注意这个按钮其实是一个form表单的提交按钮,这样我们就不再需要写js了,因为已经有全局的form表单的js。
改动同步
接下来我们做些数据改动同步的问题,当我们添加修改或者删除了文章数据时候,es能同步修改。
这里我们使用的是mq,数据发送变化时候,发送一条消息到MQ,然后mq消费端接受消息然后把这条消息的最新状态同步到ES中
首先类配置一下mq。新建一个RabbitMqConfig类放在config包下。我们先来回顾一下消息队列的内容,RabbitMQ里面发送接收消息有几种类型
Direct类型(路由模式)
Fanout 类型(发布订阅模式)
Topic类型(通配符模式)
这里我们直接使用Direct模式即可。这里会涉及到队列Queue、交换机Exchange、还有路由键RouteKey(BindingKey)。
发布者发送消息到交换机,通过交换机和队列的路由键,把消息推向队列并保存起来,然后消费者订阅队列处理消息即可。
所以在RabbitMqConfig里面我们需要声明一下queue、exchange、routekey。并且绑定起来。
com.example.config.RabbitMqConfig
@Configuration
public class RabbitMqConfig {
// 队列名称
public final static String ES_QUEUE = "es_queue";
public final static String ES_EXCHANGE = "es_exchange";
public final static String ES_BIND_KEY = "es_index_message";
/**
* 声明队列
* @return
*/
@Bean
public Queue exQueue() {
return new Queue(ES_QUEUE);
}
/**
* 声明交换机
* @return
*/
@Bean
DirectExchange exchange() {
return new DirectExchange(ES_EXCHANGE);
}
/**
* 绑定交换机和队列
* @param exQueue
* @param exchange
* @return
*/
@Bean
Binding bindingExchangeMessage(Queue exQueue, DirectExchange exchange) {
return BindingBuilder.bind(exQueue).to(exchange).with(ES_BIND_KEY);
}
}
关于消费者和生产者之间的消息,我们需要一个共同约定类型。这里我需要新建一个消息模板,生产者发布消息时候只需要往消息模板填写,然后发送过来,消费者就能根据消息模板来处理消息。消息模板的内容需要斟酌一下,首先需要一个类型,因为是es与数据库数据的同步(比如新发表、更新、删除了一篇文章)。不同类型需要不同的处理手段。然后文章的id需要的。然后如果es处理数据失败的话我们需要重试,重试次数是有限的,所以这里我们定义一个重试次数的字段。
代码如下:
com.example.search.common.PostMqIndexMessage
/**
* 用于服务之间消息通讯模板
*/
@Data
public class PostMqIndexMessage {
public static final String CREATE = "create";
public static final String UPDATE = "update";
public static final String REMOVE = "remove";
public static final int MAX_RETRY = 3;
private Long postId;
private String type;
private int retry = 0;
public PostMqIndexMessage() {
}
public PostMqIndexMessage(Long postId, String type) {
this.postId = postId;
this.type = type;
}
public PostMqIndexMessage(Long postId, String type, int retry) {
this.postId = postId;
this.type = type;
this.retry = retry;
}
}
因为消息发送都是通过经过序列化的json数据,所以我们先用String类型把消息内容接受,然后让内容与消息模板进行转换。可以使用ObjectMapper这个工具。然后接下来就是根据消息类型来处理消息了。
com.example.mq.HandlerMessage
/**
* 监听异步消息队列
* 更新搜索内容
*/
@Slf4j
@Component
@RabbitListener(queues = RabbitMqConfig.ES_QUEUE)
public class HandlerMessage {
@Autowired
private ObjectMapper objectMapper;
@Autowired
SearchService searchService;
@RabbitHandler
public void handler(String content) {
try {
PostMqIndexMessage message = objectMapper.readValue(content, PostMqIndexMessage.class);
switch (message.getType()) {
case PostMqIndexMessage.CREATE:
case PostMqIndexMessage.UPDATE:
searchService.createOrUpdateIndex(message);
break;
case PostMqIndexMessage.REMOVE:
searchService.removeIndex(message);
break;
default:
log.warn("没有找到对应的消息类型,请注意!!!, ---> {}", content);
break;
}
} catch (IOException e) {
log.error("这是内容----> {}", content);
log.error("处理HandlerMessage失败 --> ", e);
}
}
}
接下来我们就去SearchService里去写对应的方法。首先看createOrUpdateIndex方法,在ElasticsearchRepository里面,更新或者新建都是用save方法,所以步骤基本都一直,新建类型里我先删掉原来的(如果有)。其他没啥不一样了。
然后我们注重看下createOrUpdateIndex和removeIndex两个方法,创建或修改其实很简单,只需要把修改的数据查询出来,然后转换成PostDocument就可以直接持久化了,
com.example.service.impl.SearchServiceImpl
/**
* 异步创建或者更新
*/
public void createOrUpdateIndex(PostMqIndexMessage message) {
long postId = message.getPostId();
PostVo postVo = postService.selectOne(new QueryWrapper<Post >().eq("p.id", postId));
log.info("需要更新的post --------> {}", postVo.toString());
if(PostMqIndexMessage.CREATE.equals(message.getType())) {
if(postRepository.existsById(postId)) {
this.removeIndex(message);
}
}
PostDocument postDocument = new PostDocument();
modelMapper.map(postVo, postDocument);
PostDocument saveDoc = postRepository.save(postDocument);
log.info("es 索引更新成功!--> {}" , saveDoc.toString());
}
删除也差不多,直接通过id就可以删除
@Override
public void removeIndex(PostMqIndexMessage message) {
long postId = message.getPostId();
postRepository.deleteById(postId);
log.info("es 索引删除成功!--> {}" , message.toString());
}
有了mq的消费端,那么在哪里发送mq消息呢?在增删改数据的时候发送一条mq消息。我们找到对应的方法:
com.example.controller.PostController#submit
其中mq的发送模板是AmqpTemplate ,直接注入即可。
@Autowired
AmqpTemplate amqpTemplate;
删除也类似:
com.example.controller.PostController#delete
发送了mq之后,消费端就会同步es的数据,所以我们能保证es的数据和数据库的数据实时保持一致。
致此,搜索功能已经完成。
后台管理
置顶精选
关于文章的指定精选删除等功能,都是后台管理员能操作的动作,指定和精选其实都是post的一个状态问题,所以逻辑上特别简单,而且原js已经帮我们写好了方法,所以我们只需修改一下链接,然后在AdminController中添加对应的处理逻辑即可。
先来看下前端:
static/res/mods/jie.js
//设置置顶、状态
,set: function(div){
var othis = $(this);
fly.json('/admin/jie-set/', {
id: div.data('id')
,rank: othis.attr('rank')
,field: othis.attr('field')
}, function(res){
if(res.status === 0){
location.reload();
}
});
}
可以看到,发起链接时候有几个参数,id,rank,field等。然后看看html:
templates/post/view.ftl
class="layui-btn layui-btn-xs jie-admin" type="set" field="delete" rank="1">删除
class="layui-btn layui-btn-xs jie-admin" type="set" field="stick" rank="1">置顶#if>
class="layui-btn layui-btn-xs jie-admin" type="set" field="stick" rank="0" style="background-color:#ccc;">取消置顶#if>
class="layui-btn layui-btn-xs jie-admin" type="set" field="status" rank="1">加精#if>
class="layui-btn layui-btn-xs jie-admin" type="set" field="status" rank="0" style="background-color:#ccc;">取消加精#if>
@shiro.hasRole>
因为是后台管理操作,所以需要这个admin权限,然后我们需要在Shiro的Realm中声明一下权限的问题,这里我比较简单,没有写权限模块,直接写死了admin作为超级管理员:
com.example.shiro.AccountRealm
@Override
protected AuthorizationInfo doGetAuthorizationInfo(PrincipalCollection principalCollection) {
AccountProfile principal = (AccountProfile) principalCollection.getPrimaryPrincipal();
// 硬编码
if(principal.getUsername().equals("admin") || principal.getId() == 1){
SimpleAuthorizationInfo info = new SimpleAuthorizationInfo();
info.addRole("admin");
return info;
}
return null;
}
可以看到硬编码写死了用户admin或者id为1有角色admin,其他都没有任何权限和角色。然后我们再看看AdminController
com.example.controller.AdminController
@ResponseBody
@PostMapping("/jie-set")
public Result jieSet(Long id, Integer rank, String field) {
Post post = postService.getById(id);
Assert.isTrue(post != null, "该文章已被删除");
if("delete".equals(field)) {
postService.removeById(id);
return Result.succ(null);
} else if("stick".equals(field)) {
post.setLevel(rank);
} else if("status".equals(field)) {
post.setRecommend(rank == 1);
}
postService.updateById(post);
return Result.succ(null);
}
直接就调用updateById修改状态即可。这里还有一个删除功能,也就是说不仅仅本人可以删除,超级管理员也有权限删除文章了。
给eblog一个star,感谢支持哈