android开根号,定点数开根号的性能问题

66b52468c121889b900d4956032f1009.png

8种机械键盘轴体对比

本人程序员,要买一个写代码的键盘,请问红轴和茶轴怎么选?

开根号有两种比较常见的方式:牛顿迭代法和二分法。

二分法

public static double SqrtBinary(double value)

{

/**二分法实现开方

需要注意的是:

1.初始上界是A+0.25,而不是A

2.double型的精度DBL_EPSILON,不能随意指定

*/

double a = 0.0, b = value + 0.25, m; // b = A 是错误的上届

// while(b - a > 2*DBL_EPSILON){ //sometimes dead cycle when m == a or m == b.

for (;;)

{

m = (b + a) / 2;

if (m - a < DBL_EPSILON || b - m < DBL_EPSILON) break;

if ((m * m - value) * (a * a - value) < 0) b = m;

else a = m;

}

return m;

}

牛顿迭代法

public static double SqrtND(double value)

{

double x0 = value + 0.25, x1, xx = x0;

for (;;)

{

x1 = (x0 * x0 + value) / (2 * x0);

if (Math.Abs(x1 - x0) <= DBL_EPSILON) break;

if (xx == x1) break; //to break two value cycle.

xx = x0;

x0 = x1;

}

return x1;

}

因为本人是用unity的开发者,简单写一下测试的demo代码,看看在android上的性能表现

具体的代码在github

结合unity的Mathf.sqrt和System.Math.sqrt来测试

测试结果在使用mono打包的情况下SqrtBinary 耗时=> 2486800

SqrtND 耗时=> 1400908

Mathf.Sqrt 耗时=> 222906

Math.Sqrt 耗时=> 192895

=======================

SqrtBinary 耗时=> 2574513

SqrtND 耗时=> 1401643

Mathf.Sqrt 耗时=> 212643

Math.Sqrt 耗时=> 182390

=======================

SqrtBinary 耗时=> 2504743

SqrtND 耗时=> 1395411

Mathf.Sqrt 耗时=> 213225

Math.Sqrt 耗时=> 181148

=======================

在每轮20W次的情况下,执行三轮,发现Math.Sqrt > Mathf.Sqrt > SqrtND > SqrtBinary,C#的math是最高效的,查看Mathf.sqrt后,可以看到unity的mathf对数据进行了多次类型转换,故mathf的消耗比math要打属正常。

在使用il2cpp打包的情况下SqrtBinary 耗时=> 1744842

SqrtND 耗时=> 430589

Mathf.Sqrt 耗时=> 27215

Math.Sqrt 耗时=> 49882

=======================

SqrtBinary 耗时=> 1770444

SqrtND 耗时=> 433782

Mathf.Sqrt 耗时=> 26203

Math.Sqrt 耗时=> 49729

=======================

SqrtBinary 耗时=> 1693556

SqrtND 耗时=> 429176

Mathf.Sqrt 耗时=> 26054

Math.Sqrt 耗时=> 50526

=======================

在每轮20W次的情况下,执行三轮,发现Mathf.Sqrt > Math.Sqrt > SqrtND > SqrtBinary,居然是unity的mathf最高效,看来是unity的il2cpp做了什么不得了的事情了,后面我们在去看看原因。

原因:通过查看il2cpp生成的cpp文件

Algorithm_sqrt_mathf.png

Algorithm_sqrt_math.png

我们可以看到,两个方法在生成上的差异就仅仅只是精度的差异!所以效率在于精度

空间换时间static int[] table = { 0, 16, 22, 27, 32, 35, 39, 42, 45, 48, 50, 53,

55, 57, 59, 61, 64, 65, 67, 69, 71, 73, 75, 76, 78, 80, 81, 83, 84,

86, 87, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104,

106, 107, 108, 109, 110, 112, 113, 114, 115, 116, 117, 118, 119,

120, 121, 122, 123, 124, 125, 126, 128, 128, 129, 130, 131, 132,

133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 144,

145, 146, 147, 148, 149, 150, 150, 151, 152, 153, 154, 155, 155,

156, 157, 158, 159, 160, 160, 161, 162, 163, 163, 164, 165, 166,

167, 167, 168, 169, 170, 170, 171, 172, 173, 173, 174, 175, 176,

176, 177, 178, 178, 179, 180, 181, 181, 182, 183, 183, 184, 185,

185, 186, 187, 187, 188, 189, 189, 190, 191, 192, 192, 193, 193,

194, 195, 195, 196, 197, 197, 198, 199, 199, 200, 201, 201, 202,

203, 203, 204, 204, 205, 206, 206, 207, 208, 208, 209, 209, 210,

211, 211, 212, 212, 213, 214, 214, 215, 215, 216, 217, 217, 218,

218, 219, 219, 220, 221, 221, 222, 222, 223, 224, 224, 225, 225,

226, 226, 227, 227, 228, 229, 229, 230, 230, 231, 231, 232, 232,

233, 234, 234, 235, 235, 236, 236, 237, 237, 238, 238, 239, 240,

240, 241, 241, 242, 242, 243, 243, 244, 244, 245, 245, 246, 246,

247, 247, 248, 248, 249, 249, 250, 250, 251, 251, 252, 252, 253,

253, 254, 254, 255 };

/**

* A faster replacement for (int)(java.lang.Math.sqrt(x)). Completely

* accurate for x < 2147483648 (i.e. 2^31)...

*/

static long SSqrt(long x) {

long xn;

if (x >= 0x10000) {

if (x >= 0x1000000) {

if (x >= 0x10000000) {

if (x >= 0x40000000) {

xn = table[x >> 24] << 8;

} else {

xn = table[x >> 22] << 7;

}

} else {

if (x >= 0x4000000) {

xn = table[x >> 20] << 6;

} else {

xn = table[x >> 18] << 5;

}

}

xn = (xn + 1 + (x / xn)) >> 1;

xn = (xn + 1 + (x / xn)) >> 1;

return ((xn * xn) > x) ? --xn : xn;

} else {

if (x >= 0x100000) {

if (x >= 0x400000) {

xn = table[x >> 16] << 4;

} else {

xn = table[x >> 14] << 3;

}

} else {

if (x >= 0x40000) {

xn = table[x >> 12] << 2;

} else {

xn = table[x >> 10] << 1;

}

}

xn = (xn + 1 + (x / xn)) >> 1;

return ((xn * xn) > x) ? --xn : xn;

}

} else {

if (x >= 0x100) {

if (x >= 0x1000) {

if (x >= 0x4000) {

xn = (table[x >> 8]) + 1;

} else {

xn = (table[x >> 6] >> 1) + 1;

}

} else {

if (x >= 0x400) {

xn = (table[x >> 4] >> 2) + 1;

} else {

xn = (table[x >> 2] >> 3) + 1;

}

}

return ((xn * xn) > x) ? --xn : xn;

} else {

if (x >= 0) {

return table[x] >> 4;

}

}

}

return -1;

}

目前测试来看,在il2cpp的情况下还是Mathf.sqrt比较高效!

倒数速算法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值