【Pytorch】CIFAR-10分类任务

CIFAR-10数据集共有60000张32*32彩色图片,分为10类,每类有6000张图片。其中50000张用于训练,构成5个训练batch,每一批次10000张图片,其余10000张图片用于测试。 CIFAR-10数据集下载地址:点击下载 数据读取,这里选择下载python版本的数据集,...

2018-07-16 16:23:36

阅读数:355

评论数:0

【Tensorflow】Bi-LSTM文本分类

用于训练的计算图#训练图 train_graph = tf.Graph() with train_graph.as_default(): #输入文本维度为[time_step,batch_size,embedding_size] encoder_inputs = tf.placeh...

2018-06-07 10:50:01

阅读数:1244

评论数:0

【论文笔记】Effective Approaches to Attention-based Neural Machine Translation

论文链接   本文针对NMT任务使用的attention机制提出两种结构,global attention将attention作用于全部输入序列,local attention每个时间步将attention作用于输入序列的不同子集。前者被称为soft attention,其原理和论文1一样,后者是...

2018-05-31 13:49:53

阅读数:289

评论数:1

【论文笔记】SPPnet

论文链接               CNN模型在识别图片前需要将图片预处理(如裁剪,扭曲)成同样大小尺寸,流程如下图所示。这一步骤不仅繁琐而且由于尺寸变化可能会影响识别精度。        事实上卷积层、池化层、激活层可以适应任意尺寸图片,但用于分类的全连接层需要固定尺寸的输入。为了解决这一问题...

2018-05-31 10:55:57

阅读数:72

评论数:0

【论文笔记】neural machine translation by jointly learning to align and translate

1.neural machine translation by jointly learning to align and translate   这篇文章是将attention机制应用于机器翻译上,普通的seq2seq模型要将输入文本的信息编码至固定长度的隐向量中,当面对长文本时会损失许多信息,...

2018-05-30 14:31:24

阅读数:471

评论数:1

【Tensorflow】文本自编码器

使用文本序列的word2vec词向量作为seq2seq模型的输入和输出,训练得到中间层的文本特征表示,可进一步进行分类任务等,encoder和decoder都使用LSTM。import tensorflow as tf import numpy as np import re from gensi...

2018-05-30 09:57:18

阅读数:425

评论数:0

【论文笔记】GloVe: Global Vectors forWord Representation

摘要    词向量的成功捕捉到了细粒度的语义信息和语法规则,本文提出的方法融合了主流模型的优点:全局矩阵分解(LSA)和局部内容窗口(Word2vec),充分利用统计信息使用词共现矩阵中频率非零的元素来训练模型。引言    使用向量空间来表示自然语言可以做为许多NLP任务(文本分类,信息检索......

2018-05-22 21:06:38

阅读数:607

评论数:0

【Python】图像预处理:图像分割

最近要参照论文   基于深度学习的眼底图像血管分割方法研究_谢林培   复现一个小实验,用深度学习的方法分割识别眼底图像中的血管,数据下载了DRIVE眼底图像数据库中的数据。DRIVE数据说明:DRIVE 数据库是由 N iemeijer 等人收集而成,里面有 40 张彩色眼底图像,训练集和测试集...

2018-04-23 21:45:01

阅读数:1282

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭