深度学习半自动化视频标注工具——VATIC使用教程

Vatic简介  Vatic是一个带有目标跟踪的半自动化视频标注工具,适合目标检测任务的标注工作。输入一段视频,支持自动抽取成粒度合适的标注任务并在流程上支持接入亚马逊的众包平台Mechanical Turk,当然也可以自己在本地标注。最大的特点是它内含基于opencv的tracking,这样一...

2019-01-23 10:04:27

阅读数 562

评论数 0

【Pytorch】CIFAR-10分类任务

CIFAR-10数据集共有60000张32*32彩色图片,分为10类,每类有6000张图片。其中50000张用于训练,构成5个训练batch,每一批次10000张图片,其余10000张图片用于测试。 CIFAR-10数据集下载地址:点击下载 数据读取,这里选择下载python版本的数据集,...

2018-07-16 16:23:36

阅读数 1077

评论数 1

【Tensorflow】Bi-LSTM文本分类

用于训练的计算图#训练图 train_graph = tf.Graph() with train_graph.as_default(): #输入文本维度为[time_step,batch_size,embedding_size] encoder_inputs = tf.placeh...

2018-06-07 10:50:01

阅读数 2331

评论数 0

【论文笔记】Effective Approaches to Attention-based Neural Machine Translation

论文链接   本文针对NMT任务使用的attention机制提出两种结构,global attention将attention作用于全部输入序列,local attention每个时间步将attention作用于输入序列的不同子集。前者被称为soft attention,其原理和论文1一样,后者是...

2018-05-31 13:49:53

阅读数 549

评论数 1

【论文笔记】SPPnet

论文链接               CNN模型在识别图片前需要将图片预处理(如裁剪,扭曲)成同样大小尺寸,流程如下图所示。这一步骤不仅繁琐而且由于尺寸变化可能会影响识别精度。        事实上卷积层、池化层、激活层可以适应任意尺寸图片,但用于分类的全连接层需要固定尺寸的输入。为了解决这一问题...

2018-05-31 10:55:57

阅读数 141

评论数 0

【论文笔记】neural machine translation by jointly learning to align and translate

1.neural machine translation by jointly learning to align and translate   这篇文章是将attention机制应用于机器翻译上,普通的seq2seq模型要将输入文本的信息编码至固定长度的隐向量中,当面对长文本时会损失许多信息,...

2018-05-30 14:31:24

阅读数 727

评论数 1

【Tensorflow】文本自编码器

使用文本序列的word2vec词向量作为seq2seq模型的输入和输出,训练得到中间层的文本特征表示,可进一步进行分类任务等,encoder和decoder都使用LSTM。import tensorflow as tf import numpy as np import re from gensi...

2018-05-30 09:57:18

阅读数 776

评论数 1

【论文笔记】GloVe: Global Vectors forWord Representation

摘要    词向量的成功捕捉到了细粒度的语义信息和语法规则,本文提出的方法融合了主流模型的优点:全局矩阵分解(LSA)和局部内容窗口(Word2vec),充分利用统计信息使用词共现矩阵中频率非零的元素来训练模型。引言    使用向量空间来表示自然语言可以做为许多NLP任务(文本分类,信息检索......

2018-05-22 21:06:38

阅读数 1225

评论数 1

提示
确定要删除当前文章?
取消 删除
关闭
关闭