中心极限与大数定理律的关系_对于实数系基本定理的学后感

最近为了准备转专业,又双叒叕地把数分看了一遍。在看了实数系基本定理这么多遍以后,总算感觉对它们有了一点点理解,所以总结一下。才疏学浅,学的东西很少,思维层次有限,希望各位多加指教QwQ

实数系基本定理各位都不陌生,这些定理包括戴德金分割,确界存在定理,单调有界数列收敛原理,闭区间套定理,Bolzano-Weierstrass定理,有限覆盖原理,柯西收敛原理。(聚点定理和Blozano-Weierstrass定理本质基本相似,并到一起就好了)

确界存在定理事实上也是实数连续性定理。可以简单地用连续性定理证明实数系是连续而没有间隙的。沿着单调有界数列收敛原理,闭区间套定理,Bolzano-Weierstrass定理这条经典的证明路径可以证明柯西收敛原理。柯西收敛原理的重要意义,不止在于我们可以完全根据数列本身来判别其收敛情况,更重要的是,柯西收敛原理事实上也是实数完备性定理。有了完备性,实数系中任意的实数构成的数列均可以收敛到实数。

实数系的连续性和完备性是分析学的基础。此前,将数集限制在自然数,整数以及有理数之中,对于极限运算均有不封闭的情况。但是当数系扩充至实数系,完备性使得实数集能够对极限封闭,实数集内的数列仍然收敛至实数。而在后面证明了Henni定理之后,函数极限和数列极限之间构建起了关系,这种完备的性质同样对实数集内的函数适用。而实数的连续性保证了对于任意一个点,我们都可以分析它任意小的邻域内的相邻点处的状况,而不会因为存在空隙导致无法分析的情况。分析学的目的,主要是研究函数在无限微小的范围内的变化状况(这个微小的程度可以是任意的),以及根据函数局部的性质去推知整体。这两者最终都建立在极限的基础上。而实数集使得极限在这个集合内是有效的,相当于稳固了微积分的基础。虽然说极限和实数集还有很多未解决的问题,但那是后话了。

就是这样

内容概要:本文详细介绍了QY20B型汽车起重机液压统的设计过程,涵盖其背景、发展史、主要运动机构及其液压回路设计。文章首先概述了汽车起重机的分类和发展历程,强调了液压技术在现代起重机中的重要性。接着,文章深入分析了QY20B型汽车起重机的五大主要运动机构(支腿、回转、伸缩、变幅、起升)的工作原理及相应的液压回路设计。每个回路的设计均考虑了性能要求、功能实现及工作原理,确保统稳定可靠。此外,文章还详细计算了支腿油缸的受力、液压元件的选择及液压统的性能验算,确保设计的可行性和安全性。 适合人群:从事工程机械设计、液压统设计及相关领域的工程师和技术人员,以及对起重机技术兴趣的高等院校学生和研究人员。 使用场景及目标:①为从事汽车起重机液压统设计的工程师提供详细的参考案例;②帮助技术人员理解和掌握液压统设计的关键技术和计算方法;③为高等院校学生提供学习和研究起重机液压统设计的实用资料。 其他说明:本文不仅提供了详细的液压统设计过程,还结合了实际工程应用,确保设计的实用性和可靠性。文中引用了大量参考文献,确保设计依据的科学性和权威性。阅读本文有助于读者深入了解汽车起重机液压统的设计原理和实现方法,为实际工程应用提供有力支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值