中心极限与大数定理律的关系_对于实数系基本定理的学后感

最近为了准备转专业,又双叒叕地把数分看了一遍。在看了实数系基本定理这么多遍以后,总算感觉对它们有了一点点理解,所以总结一下。才疏学浅,学的东西很少,思维层次有限,希望各位多加指教QwQ

实数系基本定理各位都不陌生,这些定理包括戴德金分割,确界存在定理,单调有界数列收敛原理,闭区间套定理,Bolzano-Weierstrass定理,有限覆盖原理,柯西收敛原理。(聚点定理和Blozano-Weierstrass定理本质基本相似,并到一起就好了)

确界存在定理事实上也是实数连续性定理。可以简单地用连续性定理证明实数系是连续而没有间隙的。沿着单调有界数列收敛原理,闭区间套定理,Bolzano-Weierstrass定理这条经典的证明路径可以证明柯西收敛原理。柯西收敛原理的重要意义,不止在于我们可以完全根据数列本身来判别其收敛情况,更重要的是,柯西收敛原理事实上也是实数完备性定理。有了完备性,实数系中任意的实数构成的数列均可以收敛到实数。

实数系的连续性和完备性是分析学的基础。此前,将数集限制在自然数,整数以及有理数之中,对于极限运算均有不封闭的情况。但是当数系扩充至实数系,完备性使得实数集能够对极限封闭,实数集内的数列仍然收敛至实数。而在后面证明了Henni定理之后,函数极限和数列极限之间构建起了关系,这种完备的性质同样对实数集内的函数适用。而实数的连续性保证了对于任意一个点,我们都可以分析它任意小的邻域内的相邻点处的状况,而不会因为存在空隙导致无法分析的情况。分析学的目的,主要是研究函数在无限微小的范围内的变化状况(这个微小的程度可以是任意的),以及根据函数局部的性质去推知整体。这两者最终都建立在极限的基础上。而实数集使得极限在这个集合内是有效的,相当于稳固了微积分的基础。虽然说极限和实数集还有很多未解决的问题,但那是后话了。

就是这样

weixin151云匹面粉直供微信小程序+springboot后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值