最近为了准备转专业,又双叒叕地把数分看了一遍。在看了实数系基本定理这么多遍以后,总算感觉对它们有了一点点理解,所以总结一下。才疏学浅,学的东西很少,思维层次有限,希望各位多加指教QwQ
实数系基本定理各位都不陌生,这些定理包括戴德金分割,确界存在定理,单调有界数列收敛原理,闭区间套定理,Bolzano-Weierstrass定理,有限覆盖原理,柯西收敛原理。(聚点定理和Blozano-Weierstrass定理本质基本相似,并到一起就好了)
确界存在定理事实上也是实数连续性定理。可以简单地用连续性定理证明实数系是连续而没有间隙的。沿着单调有界数列收敛原理,闭区间套定理,Bolzano-Weierstrass定理这条经典的证明路径可以证明柯西收敛原理。柯西收敛原理的重要意义,不止在于我们可以完全根据数列本身来判别其收敛情况,更重要的是,柯西收敛原理事实上也是实数完备性定理。有了完备性,实数系中任意的实数构成的数列均可以收敛到实数。
实数系的连续性和完备性是分析学的基础。此前,将数集限制在自然数,整数以及有理数之中,对于极限运算均有不封闭的情况。但是当数系扩充至实数系,完备性使得实数集能够对极限封闭,实数集内的数列仍然收敛至实数。而在后面证明了Henni定理之后,函数极限和数列极限之间构建起了关系,这种完备的性质同样对实数集内的函数适用。而实数的连续性保证了对于任意一个点,我们都可以分析它任意小的邻域内的相邻点处的状况,而不会因为存在空隙导致无法分析的情况。分析学的目的,主要是研究函数在无限微小的范围内的变化状况(这个微小的程度可以是任意的),以及根据函数局部的性质去推知整体。这两者最终都建立在极限的基础上。而实数集使得极限在这个集合内是有效的,相当于稳固了微积分的基础。虽然说极限和实数集还有很多未解决的问题,但那是后话了。
就是这样