scala写入mysql_spark rdd转dataframe 写入mysql的实例讲解

本文展示了如何将Scala中的RDD转换为DataFrame,并使用SQL查询操作数据,最后将结果追加写入MySQL数据库。示例代码详细解释了转换过程和数据过滤,以及Spark配置参数对性能的影响。
摘要由CSDN通过智能技术生成

dataframe是在spark1.3.0中推出的新的api,这让spark具备了处理大规模结构化数据的能力,在比原有的RDD转化方式易用的前提下,据说计算性能更还快了两倍。spark在离线批处理或者实时计算中都可以将rdd转成dataframe进而通过简单的sql命令对数据进行操作,对于熟悉sql的人来说在转换和过滤过程很方便,甚至可以有更高层次的应用,比如在实时这一块,传入kafka的topic名称和sql语句,后台读取自己配置好的内容字段反射成一个class并利用出入的sql对实时数据进行计算,这种情况下不会spark streaming的人也都可以方便的享受到实时计算带来的好处。

下面的示例为读取本地文件成rdd并隐式转换成dataframe对数据进行查询,最后以追加的形式写入mysql表的过程,scala代码示例如下

import java.sql.Timestamp

import org.apache.spark.sql.{SaveMode, SQLContext}

import org.apache.spark.{SparkContext, SparkConf}

object DataFrameSql {

case class memberbase(data_date:Long,memberid:String,createtime:Timestamp,sp:Int)extends Serializable{

override def toString: String="%d\t%s\t%s\t%d".format(data_date,memberid,createtime,sp)

}

def main(args:Array[String]): Unit ={

val conf = n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值