dataframe是在spark1.3.0中推出的新的api,这让spark具备了处理大规模结构化数据的能力,在比原有的RDD转化方式易用的前提下,据说计算性能更还快了两倍。spark在离线批处理或者实时计算中都可以将rdd转成dataframe进而通过简单的sql命令对数据进行操作,对于熟悉sql的人来说在转换和过滤过程很方便,甚至可以有更高层次的应用,比如在实时这一块,传入kafka的topic名称和sql语句,后台读取自己配置好的内容字段反射成一个class并利用出入的sql对实时数据进行计算,这种情况下不会spark streaming的人也都可以方便的享受到实时计算带来的好处。
下面的示例为读取本地文件成rdd并隐式转换成dataframe对数据进行查询,最后以追加的形式写入mysql表的过程,scala代码示例如下
import java.sql.Timestamp
import org.apache.spark.sql.{SaveMode, SQLContext}
import org.apache.spark.{SparkContext, SparkConf}
object DataFrameSql {
case class memberbase(data_date:Long,memberid:String,createtime:Timestamp,sp:Int)extends Serializable{
override def toString: String="%d\t%s\t%s\t%d".format(data_date,memberid,createtime,sp)
}
def main(args:Array[String]): Unit ={
val conf = n

本文展示了如何将Scala中的RDD转换为DataFrame,并使用SQL查询操作数据,最后将结果追加写入MySQL数据库。示例代码详细解释了转换过程和数据过滤,以及Spark配置参数对性能的影响。
最低0.47元/天 解锁文章
955

被折叠的 条评论
为什么被折叠?



