素数是只能被1与自身整除的数,根据定义,我们可以实现第一种算法。
算法一:
defisprime(n):if n < 2: returnFalsefor i in range(2,int(math.sqrt(n))+1):if n % i ==0:returnFalsereturn True
任意一个合数都可分解为素数因子的乘积,观察素数的分布可以发现:除 2,3 以外的素数必定分布在 6k (k为大于1的整数) 的两侧。6k % 6 == 0, (6k+2) % 2== 0,(6k+3) %3==0,(6k+4)%2==0,
所以2,3外的素数形式只能写成 6k+1 或 6k-1的形式。据此,我们可以缩小因子范围。
算法二:
def isprime(n):
if n == 2 or n == 3:
return True
if n % 2 == 0 or n % 3 == 0:
return False
for k in range(6,int(math.sqrt(n)) + 2, 6):
if n % (k-1) == 0 or n % (k+1) == 0:
return False
return True
建立一个大小为n的数组,初始值置为真。从2开始设置步长(length)直至n的平方根,将length*i (i > 1) 的值置为False。这就是埃拉托斯特尼筛法的基本思想。适用于筛选小于n的所有素数,算法如下:
算法三:
defisprime(n):
r= [[i,True] for i in range(1,n+1)]
r[0]= [1,False]for i in range(1,int(math.sqrt(n))):
j= i * 2 + 1
while j
r[j]= [j+1,False]
j+= i + 1
return r
费马小定理: ap-1= 1 (mod p) ,其中gcd(p,a) = 1 且 p 为素数
p为素数时等式一定成立,但使等式成立的p不一定都是素数,但非素数p数量极少,称之为伪素数。
任意大素数n可写成 n = u * 2t + 1, 其中 t 为 大于1 的整数,u为奇数。an - 1 = (au)2^t, 求出au 后,连续t次平方即可求得。
算法四:
defisprime_fourth(n):if n == 2: returnTrueif n % 2 == 0: returnFalse#若n为大于2的素数,形式可写成 n=u*(2^t) + 1, t >= 1 and u % 2 == 1
t =0
u= n - 1
while u % 2 ==0:
t+= 1u//= 2
#随机选择底数,若n为素数,gcd(a,n)==1
a = random.randint(2,n-1)#若n为素数,则a^(n-1) % n == 1;先计算 a^u % n,再连续t次平方可得
r =pow(a,u,n)if r != 1:while t > 1 and r != n-1:
r= (r*r) %n
t-= 1
if r != n - 1:returnFalsereturn True