原python实现素数判断_素数判断算法(python实现)

素数是只能被1与自身整除的数,根据定义,我们可以实现第一种算法。

算法一:

defisprime(n):if n < 2: returnFalsefor i in range(2,int(math.sqrt(n))+1):if n % i ==0:returnFalsereturn True

任意一个合数都可分解为素数因子的乘积,观察素数的分布可以发现:除 2,3 以外的素数必定分布在 6k (k为大于1的整数) 的两侧。6k % 6 == 0, (6k+2) % 2== 0,(6k+3) %3==0,(6k+4)%2==0,

所以2,3外的素数形式只能写成  6k+1 或 6k-1的形式。据此,我们可以缩小因子范围。

算法二:

def isprime(n):

if n == 2 or n == 3:

return True

if n % 2 == 0 or n % 3 == 0:

return False

for k in range(6,int(math.sqrt(n)) + 2, 6):

if n % (k-1) == 0 or n % (k+1) == 0:

return False

return True

建立一个大小为n的数组,初始值置为真。从2开始设置步长(length)直至n的平方根,将length*i (i > 1) 的值置为False。这就是埃拉托斯特尼筛法的基本思想。适用于筛选小于n的所有素数,算法如下:

算法三:

defisprime(n):

r= [[i,True] for i in range(1,n+1)]

r[0]= [1,False]for i in range(1,int(math.sqrt(n))):

j= i * 2 + 1

while j

r[j]= [j+1,False]

j+= i + 1

return r

费马小定理: ap-1= 1 (mod p) ,其中gcd(p,a) = 1 且 p 为素数

p为素数时等式一定成立,但使等式成立的p不一定都是素数,但非素数p数量极少,称之为伪素数。

任意大素数n可写成 n = u * 2t  + 1, 其中 t 为 大于1 的整数,u为奇数。an - 1 = (au)2^t, 求出au 后,连续t次平方即可求得。

算法四:

defisprime_fourth(n):if n == 2: returnTrueif n % 2 == 0: returnFalse#若n为大于2的素数,形式可写成 n=u*(2^t) + 1, t >= 1 and u % 2 == 1

t =0

u= n - 1

while u % 2 ==0:

t+= 1u//= 2

#随机选择底数,若n为素数,gcd(a,n)==1

a = random.randint(2,n-1)#若n为素数,则a^(n-1) % n == 1;先计算 a^u % n,再连续t次平方可得

r =pow(a,u,n)if r != 1:while t > 1 and r != n-1:

r= (r*r) %n

t-= 1

if r != n - 1:returnFalsereturn True

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值