“The only simple truth is that there is nothing simple in this complex universe. Everything relates. Everything connects”
— Johnny Rich, The Human Script
介绍
机器学习的主要应用之一是对随机过程建模。机器学习中一些随机过程的例子如下:
泊松过程:用于处理等待时间以及队列。
随机漫步和布朗运动过程:用于交易算法。
马尔可夫决策过程:常用于计算生物学和强化学习。
高斯过程:用于回归和优化问题(如,超参数调优和自动机器学习)。
自回归和移动平均过程:用于时间序列分析(如,ARIMA模型)。
在本文中,我将简要地向你介绍这些随机过程。
历史背景
随机过程是我们日常生活的一部分。随机过程之所以如此特殊,是因为随机过程依赖于模型的初始条件。在上个世纪,许多数学家,如庞加莱,洛伦兹和图灵都被这个话题所吸引。
如今,这种行为被称为确定性混沌,它与真正的随机性有着截然不同的范围界限。
由于爱德华·诺顿·洛伦兹的贡献,混沌系统的研究在1963年取得了突破性进展。当时,洛伦兹正在研究如何改进天气预报。洛伦兹在他的分析中注意到,即使是大气中的微小扰动也能引起气候变化。
洛伦兹用来描述这种状态的一个著名的短语是:
“A butterfly flapping its wings in Brazil can produce a tornado in Texas”
(在巴西,一只蝴蝶扇动翅膀就能在德克萨斯州制造龙卷风 )— Edward Norton Lorenz
(爱德华·诺顿·洛伦兹)
这就是为什么今天的混沌理论有时被称为“蝴蝶效应”。
分形学
一个简单的混沌系统的例子是分形(如图所示)。分形是在不同尺度上不断重复的一种模式。由于分形的缩放方式,分形不同于其他类型的几何图形。分形是递归驱动系统,能够捕获混沌行为。在现实生活中,分形的例子有:树、河、云、贝壳等。

图1:MC. Escher, Smaller and Smaller [1]
在艺术领域有很多自相似的图形。毫无疑问, MC. Escher是最著名的艺术家之一,他的作品灵感来自数学。事实上,在他的画中反复出现各种不可能的物体,如彭罗斯三角形和莫比乌斯带。在"Smaller and Smaller"中,他也反复使用了自相似性(图1)。除了蜥蜴的外环,画中的内部图案也是自相似性的。每重复一次,它就包含一个有一半尺度的复制图案。
确定性和随机性过程
有两种主要的随机过程:确定性和随机性。
在确定性过程中,如果我们知道一系列事件的初始条件(起始点),我们就可以预测该序列的下一步。相反,在随机过程中,如果我们知道初始条件,我们不能完全确定接下来的步骤是什么。这是因为这个过程可能会以许多不同的方式演化。