levy过程和布朗运动的关系_随机过程在数据科学和深度学习中有哪些应用?

本文探讨了随机过程在数据科学和深度学习中的应用,包括泊松过程、布朗运动、马尔可夫决策过程、高斯过程等。文章介绍了随机过程的历史背景、分形学概念,以及确定性与随机性过程的区别。通过具体的例子,如分形、随机漫步、隐马尔科夫模型和高斯过程,阐述了它们在不同领域的应用,如交易算法、强化学习和时间序列分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

“The only simple truth is that there is nothing simple in this complex universe. Everything relates. Everything connects”

— Johnny Rich, The Human Script

介绍

机器学习的主要应用之一是对随机过程建模。机器学习中一些随机过程的例子如下:

  1. 泊松过程:用于处理等待时间以及队列。

  2. 随机漫步和布朗运动过程:用于交易算法。

  3. 马尔可夫决策过程:常用于计算生物学和强化学习。

  4. 高斯过程:用于回归和优化问题(如,超参数调优和自动机器学习)。

  5. 自回归和移动平均过程:用于时间序列分析(如,ARIMA模型)。

在本文中,我将简要地向你介绍这些随机过程。

历史背景

随机过程是我们日常生活的一部分。随机过程之所以如此特殊,是因为随机过程依赖于模型的初始条件。在上个世纪,许多数学家,如庞加莱,洛伦兹和图灵都被这个话题所吸引。

如今,这种行为被称为确定性混沌,它与真正的随机性有着截然不同的范围界限。

由于爱德华·诺顿·洛伦兹的贡献,混沌系统的研究在1963年取得了突破性进展。当时,洛伦兹正在研究如何改进天气预报。洛伦兹在他的分析中注意到,即使是大气中的微小扰动也能引起气候变化。

洛伦兹用来描述这种状态的一个著名的短语是:

“A butterfly flapping its wings in Brazil can produce a tornado in Texas”
(在巴西,一只蝴蝶扇动翅膀就能在德克萨斯州制造龙卷风 )— Edward Norton Lorenz
(爱德华·诺顿·洛伦兹)

这就是为什么今天的混沌理论有时被称为“蝴蝶效应”。

分形学

一个简单的混沌系统的例子是分形(如图所示)。分形是在不同尺度上不断重复的一种模式。由于分形的缩放方式,分形不同于其他类型的几何图形。分形是递归驱动系统,能够捕获混沌行为。在现实生活中,分形的例子有:树、河、云、贝壳等。

3af7b5aeaf745c6d5fdf8472128a1f1b.png

图1:MC. Escher, Smaller and Smaller [1]

在艺术领域有很多自相似的图形。毫无疑问, MC. Escher是最著名的艺术家之一,他的作品灵感来自数学。事实上,在他的画中反复出现各种不可能的物体,如彭罗斯三角形和莫比乌斯带。在"Smaller and Smaller"中,他也反复使用了自相似性(图1)。除了蜥蜴的外环,画中的内部图案也是自相似性的。每重复一次,它就包含一个有一半尺度的复制图案。

确定性和随机性过程

有两种主要的随机过程:确定性和随机性。

在确定性过程中,如果我们知道一系列事件的初始条件(起始点),我们就可以预测该序列的下一步。相反,在随机过程中,如果我们知道初始条件,我们不能完全确定接下来的步骤是什么。这是因为这个过程可能会以许多不同的方式演化。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值