matlab 平滑曲线连接_曲线拟合的一些想法

7f45a4955b40c891e36db07f62b13c51.png

这些日子一直在想写些什么东西,而写东西的初衷就是把自己平时学习到、接触到的东西,以理性的方式表达出来。

最近在看如何用matlab来进行曲线拟合,故在此做一个学习成果汇报。

  • 曲线拟合

曲线拟合可以说在多种领域都有其用武之地,因为其主要的功能就是寻求平滑的曲线来更好的表现带有噪声的测量数据。

一般对于进行曲线拟合操作,都是先给定一部分采集的离散的数据点,在这些点的基础上建立数学模型,再求得一系列微小的直线段把这些插值点连接成曲线。因此,插值操作就是曲线拟合的核心所在。

插值也有很多种方式,通常如果采用多项式进行插值,通常数据都会出现震荡。Spline插值的方式能够很好的得到平滑的效果,但是在无形中又会引入过多的参数。

换另一个角度来思考问题,我们需要的是较好的表现带有噪声的测量数据。在这里,重点的两个词分别是较好带有噪声。因此我们所产生的拟合曲线并不需要知道所有的点,只需要我们拟合后的数据整体上与原数据的误差最小。误差是我们口语上的说法,换成相对专业点的术语来说就是“方差”。因为形象的来说,方差就是经过拟合处理后的数据和采样得到的数据之间的垂直距离。

  • 加权最小方差拟合原理(weighted least squares,WLS)

加权最小方差是根据基础数据本身各自的准确程度不同,在拟合时给每个数据以不同的加权数值。这种方法比单纯的最小方差法更加符合较好这一拟合的初衷。

以N阶多项式为例。

54c80c7615ad5ecdd83cfdd692cd987c.png

如上,如果要求解拟合系数就得先求解线性方程组,线性方程组的系数矩阵(A)和需要求解的拟合系数矩阵(θ)。

2196037a2eb17b0afe2d7bfa9662dcb0.png

就是上面这个东西,其对应的加权最小方差的表达式应为

a471b5bdee2e264c1508f15c8784ceed.png

因此问题到这里就解决了。

但是你照着这样做效果也许不是那么好,因此我们就可以继续对其进行LS多项式拟合,这样……效果你知道的。

最后,扔大家一篇有关的参考文章:计算机视觉--加权最小二乘(WLS)滤波器 - CodeTutor - CSDN博客

反正我觉得不错。

  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 扫一扫,分享海报

参与评论 您还未登录,请先 登录 后发表或查看评论
©️2022 CSDN 皮肤主题:1024 设计师:我叫白小胖 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值