主要内容:
1、引言
2、高斯消去法
3、直接分解法
4、解线性方程组的迭代法
5、向量范数、矩阵范数及迭代法的收敛性
第一节 引言
用克拉姆求解线性方程组
第二节 高斯消去法
高斯消去法是一种古老的直接法,其基本思想是通过消元将线性方程组的求解问题转化成三角形式方程组的求解问题。
1、上三角形方程组
则上方程组可以写成矩阵形式:
Ux=b
当 det(U) ≠0时,即aii≠0时,方程组有唯一解。
求解上述方程组:
一般地,假设已经求得xn,xn-1....xi+1,带入第i 个方程得到:
此过程称为回代过程。
2、回代过程的计算量
(1)乘除法运算次数
(2)加减法运算次数
第二节 高斯消去法
1、高斯消去法:

本文详细介绍了线性方程组的数值解法,包括高斯消去法及其优化的列主元高斯消去法,以及迭代法中的雅可比迭代和高斯-赛德尔迭代。讨论了向量范数和矩阵范数在迭代法收敛性中的应用,并给出计算例题。
最低0.47元/天 解锁文章

1707

被折叠的 条评论
为什么被折叠?



