旋转矩阵公式生成器_坐标变换(8)—复特征值与旋转

7b7ed34d68f978813f7f4f8ffdfd57a7.png

1.共轭复特征值

的实矩阵,

假设

的特征值,
对应的特征向量,则
同样是
的特征值,而
是对应的特征向量,

所以,当

的实矩阵,它的复特征值以共轭复数对出现。

2. rotation-scaling matrix

假如

,
为实数,且不同时为0,则将下面的矩阵称为
rotation-scaling matrix

则有,

  1. A可以写成下面的旋转+缩放形式,

其中,

,则
先旋转
,再倍乘
。 2.
的特征值为

ef6dd2ee437587ef6da081fd0d9ee873.png

3. 矩阵的复特征值

首先我们假定下面的记号,

这里首先讨论的矩阵是

的实矩阵,且矩阵有复特征值
,而与特征值相对应的特征向量为
这时候有个很漂亮的结论
,其中

其中

矩阵为rotation-scaling matrix。

为了证明矩阵

的分解公式成立,我们首先证明
是可逆的,即
是线性无关的。用反证法,假设
是线性相关的,则存在
,使得,
,则

依然是属于特征值
的特征向量,而从式(5)可以得到
是个实向量,而对于一个实矩阵的实特征向量对应的特征值一定是实的,但是和
是复特征根矛盾,因此可证
是线性无关的。

此外,我们假设复特征值

,同时对应的特征向量为
,则有,

同时,

比较式(6)和(7),可以得到,

接下来我们计算

,和
,由(4)式可以马上得到
,
(
自然基取对应的列),则有

因为

的线性无关的,可以组成
的基,对于任意的向量
,则有,

因此

。 对于
的带有rotation-scaling matrix的分解,我们可以这么理解,
中含有旋转和比例变换,矩阵
提供了变量代换,如
的作用相当于先将
代换为
,然后在
所形成的基下利用
矩阵进行旋转和缩放,旋转产生一个椭圆,然后将
再变量代换回
。注意,旋转是在
所形成的基下,
即顺着
所形成的基旋转

对于

矩阵,都有类似上述
矩阵的分解形式,下面以
为列,如果矩阵
有一个实的特征值
,一个复特征值
,则
为另外一个复特征值,
对应的实特征向量为
对应的复特征向量为
,将
分解为
,

对于上述矩阵

,在
中存在某个平面
对平面的作用是旋转和缩放,该平面在
的作用下是
不变的。 举一个例子,例如,

上述矩阵

与式(11)中的矩阵形式相同,如下图所示,对于
平面(第三坐标为0)的任一向量
旋转到该平面的另外一个位置上,不在该平面的任一向量
的第三坐标乘1.07。下图显示了
作用的迭代结果,
平面旋转,而
乘1.07后在旋转的同时也在盘旋上升

6f495a0af089a272eb4cc9b9d822aa8f.png
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值