matlab方程实验报告,中北大学高等数据MATLAB验证性实验5微分方程与应用MATLAB实验报告格式...

该博客介绍了制药工程专业的学生进行的一门实验课程,主要涉及微分方程的理论与MATLAB应用。实验目标是掌握用MATLAB解决常微分方程的求解技巧,包括一阶、高阶微分方程的求解方法,以及使用dsolve和ode系列函数进行数值解的求解。通过实例展示了如何验证通解并求解特定条件下的微分方程,适合进行实验练习和理论巩固。
摘要由CSDN通过智能技术生成

实验课程:

____________________

业:

_____ 制药工程 ___ __ __

级:

_____ 14040242__ __ __ __

号:

_____ _ 14040242 xx_ _ _____

名:

_______x x xxxxx ________

中北大学理学院

目录 实验五

微分方程及应用 ...............................................................................................................3 【实验类型】

...........................................................................................................................3 【实验学时】

...........................................................................................................................3 【实验目的】

...........................................................................................................................3 【实验内容】

...........................................................................................................................3 【实验方法与步骤】

...............................................................................................................3 一、实验的基本理论与方法 ...........................................................................................3 二、实验使用的 MATLAB 函数 ....................................................................................4 【实验练习】

...........................................................................................................................5

实验五

微分方程及应用 【 实验类型 】

验证性 【 实验学时 】

1 学时 【实验目的】

掌握用 MATLAB 求常微分方程的解的方法,了解用 MATLAB求常微分方程的数值解的方法。

【实验内容】

1.熟悉各种简单常微分方程及解法; 2.利用 MATLAB 求解常见常微分方程。

【 实验方法与步骤 】

一、实验的基本理论与方法 1.一阶微分方程的求法。

2.可降阶的高阶微分方程的求法。

3.高阶常系数齐次线性微分方程的求法。

4.高阶常系数非齐次线性微分方程的求法。

的 二、实验使用的 MATLAB 函数

1.dsolve:求解常微分方程的通解。

dsolve 命令的调用格式有:

◆dsolve("equ")

◆dsolve("equ", " var")

上述命令调用格式中,equ 为待求解的常微分方程,第一种调用格式视变量 t 为自变量进行求解;第二种调用格式中 var 为指定变量,dsolve 将以 var 为自变量进行常微分方程的求解。

2.dsolve("equ","condition1,condition2, ,conditionm", " var") 或

dsolve("equ", "condition1", "condition2", , "conditionm", " var"):求解有初始条件的常微分方程。

以上两种调用格式所得结果完全相同,其中:equ 为常微分方程;condition1, condition2, ,conditionm 为初始条件;var 为指定变量。

注 注 1:输入量包括三部分:微分方程、初始条件、指定自变量。其中微分方程是必不可少的输入内容,其余部分的有无视情况而定。

注 注 2:

:如不对独立变量加以专门的定义,则默认小写英文字母 t 为自变量。

微分方程的表示规定:当y 为函数时,用“Dny”表示“ y 的 n 阶导数”。在 t 为默认自变量时,Dy表示ddyt , Dny 表示ddtnny。

注 注 3:

:对初始条件或边界条件的规定:应写成( ) y a b ,( ) Dy c d 等。, , , a b c d可以是变量使用符号之外的其它符号。当初始条件少于微分方

程数时,在所得解中将出现任意常数符号1, 2, C C,解中任意常数符号的数目等于所缺少的初始条件数。

3、ode23,ode45,ode113,ode15s,ode23s,ode23t,ode23tb:求解常微分方程的数值解。

调用格式:

◆[T,Y] = solver(odefun,tspan,y0)

◆[T,Y] = solver(odefun,tspan,y0,options)

◆[T,Y,TE,YE,IE] = solver(odefun,tspan,y0,options) odefun 是函数句柄,可以是函数文件名,匿名函数句柄或内联函数名; tspan 是区间0[ , ]ft t或者一系列散点0 1, ,...,ft t t    ; y0 是初始值向量; T 返回列向量的时间点; Y 返回对应 T 的求解列向量; options 是求解参数设置,可以用 odeset 在计算前设定误差,输出参数,事件等; solver 是函数 ode45,ode23,ode113,ode15s,ode23s,ode23t,或ode23tb 中其中一个。

【实验练习】

1 、验 证 函 数2( )sin y x C x  (C为 任 意 常 数 )

是 方 程dcot 2 sin 0dyy x x xx  的通解,并求满足初始条件π20xy的特解。

2、求解下列微分方程的通解。

(1)d2dyxyx;

>> dsolve("Dy-2*x*y","x")

ans =

C4*exp(x^2)

(2)dylndy yxx x; >> dsolve("x*Dy-y*log(y/x)","x")

ans =

x*exp(1)

x*exp(exp(C8 + log(x)) + 1) (3)52d 2( 1)d 1y yxx x  ;

>>

dsolve("Dy-(2*y/(x+1))-(x+1)^(5/2)","x")

ans =

(2*(x + 1)^(7/2))/3 + C11*(x + 1)^2

(4)2d3dyxy xyx 。

>> dsolve("Dy-3*x*y-x*y*y","x")

ans =

0

-3

-(3*exp((3*x^2)/2 + 3*C14))/(exp((3*x^2)/2 + 3*C14) - 1) 3、求解下列微分方程的通解。

(1)222de cosdxyxx ;

>> dsolve("D2y-exp(2*x)-cos(x)","x")

ans =

C18 + exp(2*x)/4 - cos(x) + C17*x

>>

(2)22d dd dy yxx x ; >> dsolve("D2y-Dy-x","x")

ans =

C20 - x + C21*exp(x) - x^2/2 - 1

(3)201yyy 。>> dsolve("D2y+((Dy)^2)/(1-y)","x")

ans =

C25

exp(C24 - C23*x) + 1

4、求解下列微分方程的通解(1)4 4 0 y y y      >> dsolve("D2y+4*Dy+4*y","x")

ans =

C27/exp(2*x) + (C28*x)/exp(2*x);

(2)(4)5 36 0 y y y    。

>>

dsolve("D4y+5*D2y-36*y","x")

ans =

C35*cos(3*x) + C37/exp(2*x) + C38*exp(2*x) + C36*sin(3*x)

5、求解下列微分方程的通解(1)(3)3 3 e x y y y y      ;

(2)6 9 e cosxy y y x     。

6、求解微分方程2y xy,(0) 1 y ,先求解析解,再求数值解,并进行比较。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值