实验课程:
____________________
专
业:
_____ 制药工程 ___ __ __
班
级:
_____ 14040242__ __ __ __
学
号:
_____ _ 14040242 xx_ _ _____
姓
名:
_______x x xxxxx ________
中北大学理学院
目录 实验五
微分方程及应用 ...............................................................................................................3 【实验类型】
...........................................................................................................................3 【实验学时】
...........................................................................................................................3 【实验目的】
...........................................................................................................................3 【实验内容】
...........................................................................................................................3 【实验方法与步骤】
...............................................................................................................3 一、实验的基本理论与方法 ...........................................................................................3 二、实验使用的 MATLAB 函数 ....................................................................................4 【实验练习】
...........................................................................................................................5
实验五
微分方程及应用 【 实验类型 】
验证性 【 实验学时 】
1 学时 【实验目的】
掌握用 MATLAB 求常微分方程的解的方法,了解用 MATLAB求常微分方程的数值解的方法。
【实验内容】
1.熟悉各种简单常微分方程及解法; 2.利用 MATLAB 求解常见常微分方程。
【 实验方法与步骤 】
一、实验的基本理论与方法 1.一阶微分方程的求法。
2.可降阶的高阶微分方程的求法。
3.高阶常系数齐次线性微分方程的求法。
4.高阶常系数非齐次线性微分方程的求法。
的 二、实验使用的 MATLAB 函数
1.dsolve:求解常微分方程的通解。
dsolve 命令的调用格式有:
◆dsolve("equ")
◆dsolve("equ", " var")
上述命令调用格式中,equ 为待求解的常微分方程,第一种调用格式视变量 t 为自变量进行求解;第二种调用格式中 var 为指定变量,dsolve 将以 var 为自变量进行常微分方程的求解。
2.dsolve("equ","condition1,condition2, ,conditionm", " var") 或
dsolve("equ", "condition1", "condition2", , "conditionm", " var"):求解有初始条件的常微分方程。
以上两种调用格式所得结果完全相同,其中:equ 为常微分方程;condition1, condition2, ,conditionm 为初始条件;var 为指定变量。
注 注 1:输入量包括三部分:微分方程、初始条件、指定自变量。其中微分方程是必不可少的输入内容,其余部分的有无视情况而定。
注 注 2:
:如不对独立变量加以专门的定义,则默认小写英文字母 t 为自变量。
微分方程的表示规定:当y 为函数时,用“Dny”表示“ y 的 n 阶导数”。在 t 为默认自变量时,Dy表示ddyt , Dny 表示ddtnny。
注 注 3:
:对初始条件或边界条件的规定:应写成( ) y a b ,( ) Dy c d 等。, , , a b c d可以是变量使用符号之外的其它符号。当初始条件少于微分方
程数时,在所得解中将出现任意常数符号1, 2, C C,解中任意常数符号的数目等于所缺少的初始条件数。
3、ode23,ode45,ode113,ode15s,ode23s,ode23t,ode23tb:求解常微分方程的数值解。
调用格式:
◆[T,Y] = solver(odefun,tspan,y0)
◆[T,Y] = solver(odefun,tspan,y0,options)
◆[T,Y,TE,YE,IE] = solver(odefun,tspan,y0,options) odefun 是函数句柄,可以是函数文件名,匿名函数句柄或内联函数名; tspan 是区间0[ , ]ft t或者一系列散点0 1, ,...,ft t t ; y0 是初始值向量; T 返回列向量的时间点; Y 返回对应 T 的求解列向量; options 是求解参数设置,可以用 odeset 在计算前设定误差,输出参数,事件等; solver 是函数 ode45,ode23,ode113,ode15s,ode23s,ode23t,或ode23tb 中其中一个。
【实验练习】
1 、验 证 函 数2( )sin y x C x (C为 任 意 常 数 )
是 方 程dcot 2 sin 0dyy x x xx 的通解,并求满足初始条件π20xy的特解。
2、求解下列微分方程的通解。
(1)d2dyxyx;
>> dsolve("Dy-2*x*y","x")
ans =
C4*exp(x^2)
(2)dylndy yxx x; >> dsolve("x*Dy-y*log(y/x)","x")
ans =
x*exp(1)
x*exp(exp(C8 + log(x)) + 1) (3)52d 2( 1)d 1y yxx x ;
>>
dsolve("Dy-(2*y/(x+1))-(x+1)^(5/2)","x")
ans =
(2*(x + 1)^(7/2))/3 + C11*(x + 1)^2
(4)2d3dyxy xyx 。
>> dsolve("Dy-3*x*y-x*y*y","x")
ans =
0
-3
-(3*exp((3*x^2)/2 + 3*C14))/(exp((3*x^2)/2 + 3*C14) - 1) 3、求解下列微分方程的通解。
(1)222de cosdxyxx ;
>> dsolve("D2y-exp(2*x)-cos(x)","x")
ans =
C18 + exp(2*x)/4 - cos(x) + C17*x
>>
(2)22d dd dy yxx x ; >> dsolve("D2y-Dy-x","x")
ans =
C20 - x + C21*exp(x) - x^2/2 - 1
(3)201yyy 。>> dsolve("D2y+((Dy)^2)/(1-y)","x")
ans =
C25
exp(C24 - C23*x) + 1
4、求解下列微分方程的通解(1)4 4 0 y y y >> dsolve("D2y+4*Dy+4*y","x")
ans =
C27/exp(2*x) + (C28*x)/exp(2*x);
(2)(4)5 36 0 y y y 。
>>
dsolve("D4y+5*D2y-36*y","x")
ans =
C35*cos(3*x) + C37/exp(2*x) + C38*exp(2*x) + C36*sin(3*x)
5、求解下列微分方程的通解(1)(3)3 3 e x y y y y ;
(2)6 9 e cosxy y y x 。
6、求解微分方程2y xy,(0) 1 y ,先求解析解,再求数值解,并进行比较。