beta分布_数理统计第六讲(非中心三大分布,beta分布,Z分布,指数型分布族)...

2.4常用分布与分布族(续)

上一讲已经把数理统计中的三大分布介绍了一遍,这里先补充非中心化的三大分布.

  • 非中心
    分布:

它的构造型定义也是正态随机变量平方和的形式,只不过每个正态随机变量的期望可以非0,但方差还是1.

定义 设

相互独立,
不全为0,则

为具有自由度

,非中心化参数为
的非中心
分布,记作

.

它有三个性质:

特征函数

,则它的特征函数为

※可加性

且相互独立,则

其中

※数字特征

,则

由于

分布在三大分布里算形式最简单的,所以我们推导一下它的性质.

首先可加性利用它的构造型定义,对每个非中心

分布都可以表示成一些正态随机变量的平方和,因为非中心
分布之间是独立的,所以可以取对应于不同非中心
分布的正态随机变量也是独立的,进而得到结论.

其次,求数字特征的话,考虑到它的可加性,只要计算

的情形即可.可以把正态随机变量
拆解为标准正态随机变量加一个常数,即

其中
,那么

因此

其中利用了标准正态随机变量的四阶矩为3,进而对于自由度不是1的非中心

分布,只要将常数替换为自由度即可.

最后来计算下它的矩母函数,还是利用

,根据矩母函数的定义有

其中第二个等号是随机变量函数的数学期望公式,计算这个积分就是将被积函数配凑称某个正态分布函数,进而利用正态分布函数积分为1来得到积分结果.

把矩母函数中的

换成
就得到特征函数为

  • 非中心
    分布

在原来

分布的基础上,
分子对应的正态随机变量期望可以非0,但方差还是1.
  • 非中心
    分布

在原来

分布的基础上,分子对应的
随机变量变成非中心
随机变量,注意
分母没有改变.

我们接下来再介绍两个统计中常用的分布:

分布

定义具有如下密度函数的分布为

分布

其中

为形状参数,这里
注意密度函数的支撑为0到1

利用beta函数与gamma函数的关系

,beta分布的密度函数也可以写成

其中

,我们可以用
,
来表示beta分布.

不同自由度下,beta分布的密度函数如图所示

b13735ad85658a254b205a29fc20a45e.png
beta分布密度函数

可以看出,beta分布在自由度变化时,其形状变化非常不规律.

下面给出beta分布的数字特征,求这种比较复杂的分布的数字特征时,首先是利用随机变量函数的数学期望公式,其次是要通过配一些常数,把被积函数转变成某个分布的密度函数,然后利用密度函数积分为1得到.

beta分布的k阶矩

beta分布的均值和方差

此外,利用均匀分布也能够生成beta分布:

,则

这里直接写出次序统计量的密度函数与beta分布的密度进行比较即可.

我们在概率论中学过,一个随机变量的分布函数作用这个随机变量,可以得到均匀分布.即设

为连续函数,则
,因此我们结合分布函数非降的特性,进一步能够得到
.

分布

定义具有如下密度函数的分布为

分布

其中

,记为
.其密度函数也可以用beta函数表示为

其数字特征还是没啥好说的,随机变量函数的数学期望公式+配凑密度函数.

Z分布的k阶矩为

特别地,

数学期望的形式可以适当记忆下,第一个参数比上第二个参数减1

划重点!!!Z分布是一类“交友广泛”的分布,通过它可以得到我们上两讲中介绍过的很多分布:

与beta分布的关系

证明的话利用随机变量函数的密度变换公式即可,可以这样记忆:beta密度的支撑为0到1,而

,因此Z分布变beta分布,分母应该是加号,相反,beta分布变Z分布,分母就是减号了.

与gamma分布的关系

,且二者独立,则

并且

独立

第一个就是gamma函数的可加性,单独证第二个可能有点麻烦,可以先写出联合密度然后利用随机变量函数的密度变换公式将两个结果以及独立性一同证明.

根据这个结果,还可以得到以下推论:

,且相互独立,则

即两gamma的尺度参数相同且独立,那么①/①+②就beta分布.

与F分布的关系

证明 利用

,其中

由独立性得到

利用这个结果,我们可以通过Z分布的密度作变量替换的方式,来得到F分布的密度,这也是求F分布密度的常用方法.F分布的数学期望也可以利用Z分布的数学期望导出:

形式上之和第二自由度有关,并且第二自由度不能为2.

利用这个结果,还能得到F分布与beta分布的关系

,则

下面我们来学习一类非常广泛的分布族

2.6指数型分布族

定义 设参数分布族

,
可以是密度函数(p.d.f),也可以是分布列(p.m.f),如果它可以写成

则称该参数分布族为指数型分布族,或指数族;其中

为参数的函数,与
无关,
与未知参数无关.

直观上看,判断一个参数分布族是否为指数型分布族,即判断其中表示未知参数

的函数和表示自变量
能否分离.并且补充一点,当
时,该分布族也称为
单参数指数型分布族.注意, 并不是参数的个数为1!并不是参数的个数为1!并不是参数的个数为1!

如果作个变量替换,

,且将
表示成关于
的函数
,那么
就表示成

这个形式称为指数型分布族的自然形式,此时由

的取值范围结合变量替换形式能得到
的取值范围,称为
自然参数空间.这个自然参数空间之后判断完备性需要用到!

例1 正态分布族

为指数型分布族

其密度函数可以表示为

根据定义,取

可知它是一个指数型分布族.

例2 二项分布族

(注意其中n是已知的)是指数型分布族

其概率分布列为

千万注意不能漏掉支撑

,否则分布列形式就是错误的!

可知它是指数型分布族.如果令

,可以得到它的自然形式为

根据

可以得到
,即自然参数空间为

但如果

是未知的呢?我们可以发现在

中,

是无法分离的,因此
未知的情况下,二项分布族并不是指数型分布族
.

例3 均匀分布族

不是指数型分布族

这是因为该分布族的密度函数的支撑为

,其中含有未知参数,因此未知参数与自变量不可能分离,所以它不是指数型分布族.

这个例子给出判断一个分布族不是指数型分布族的方法:如果当其支撑含有未知参数.

反过来,也得到了指数型分布族的一个重要性质:指数型分布族的支撑集与参数

无关.

此外,如果总体来自指数型分布族,那么从中抽取的简单随机样本也是指数型分布族,样本的联合密度函数可以写成

以及指数型分布族还有很好地解析性质

在指数型分布族的自然形式中,如果它的自然参数空间有内点,且在内点集合中,对于实值函数

,积分

存在且有限,则

形式上很吓人,实际上想要说明的是,

的期望关于参数求导等于
与密度函数的乘积对参数求导再积分,也就是
积分与求导可以交换次序.
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值