
前两天看了妈咪叔的视频,有所启发,想把他的思路再好好整理一下。
五次方程(二)如何求解二三四次方程?www.bilibili.com
首先我们有一个标准的二次方程,其中二次项系数不为0

因为他有两个根x1和x2,所以我们可以把原方程写作:

很显然这两个式子是等价的:

展开以后我们就可以得到根与系数的关系(韦达定理)

那有了这两个式子我们就可以根据x1+x2,x1-x2,x1x2三兄弟的关系得到:

那有了x1+x2和x1-x2这个二元一次方程就变得很简单了:

一元三次方程的一般形式为:

所有系数同除a,再进行等价的代换可以得到

如果我们此时令y=x-a/3,目的是为了消去原方程的二次项,我们不用完全展开

方程仅有的两个二次项是可以被消去的
所以我们要解三次方程,其实只需要解一个形如:

而这个式子和完全立方公式又有着密切的关系
发现了没有,他们是完全等价的,我们令x=a+b

可得

下面的步骤和我们刚才解二次方程就有点类似了,我们尝试着构造a^3-b^3

然后我们联立a^3+b^3和a^3-b^3

解得

其中根号下的部分就是三次方程的判别式Δ

然后我们带回到原来的拆解式x=a+b就可以得到卡尔丹诺公式:

然而是塔尔塔利亚告诉卡尔丹诺的233333,就好像我写的东西都是妈咪叔告诉我的

当然根据代数学基本定理我们知道几次方程就有几个复数根,我们现在只得到一个还差两个
其实是因为我们在开ab三次根号的时候漏掉了,a^3=1,则a除了可能是1,还可能是w和w^2,这个在复数域上画张图就能解释清楚

综上可得

硬核一点就是这样的


前面的方法和三次方程如出一辙,主要就是把最高次项系数变成1,并消去次高项

等价于解这两个二次方程

仔细运算可以得到

现在我们需要把klmn都用pqr进行表示

由②③可得,注意k≠0,等于0的话这个四次方程是非常好解的。

带回到④,(如果和我一样你进行过计算的话,就知道①我们之前用过多次了)

继续展开,并整理成关于k的方程可得:

这是一个关于k的一元六次方程,也就是关于k^2的一元三次方程
三次方程可解,k^2可解,k可解,n和l可解,同时m可解。
好了,这篇文章就到这里,非常感谢妈咪叔的视频让我终于有动力完成全文,去仔细地研究三次和四次方程的解法。
学习并不是一个轻而易举的过程,看过不代表学会,绝知此事仍要躬行。
