python二分法求方程的根_如何求解二次到四次方程?

6a3eea2e8499ea3b85a6f3ec310be4ff.png

前两天看了妈咪叔的视频,有所启发,想把他的思路再好好整理一下。

五次方程(二)如何求解二三四次方程?​www.bilibili.com

a65be55c6df80d9f4c561f5778895217.png

首先我们有一个标准的二次方程,其中二次项系数不为0

ad8f4aea0b911df32d2e68d973d657e2.png

因为他有两个根x1和x2,所以我们可以把原方程写作:

1ade11c02c735dbefcc009ca88e1688b.png

很显然这两个式子是等价的:

456796ee2ec47b305a87a4391c9284d0.png

展开以后我们就可以得到根与系数的关系(韦达定理)

1dd80807141239ce905db23461d2ce09.png

那有了这两个式子我们就可以根据x1+x2,x1-x2,x1x2三兄弟的关系得到:

0e79466a908337af20c0009bdf44d127.png

那有了x1+x2和x1-x2这个二元一次方程就变得很简单了:

d2f393f5e92ce0659538b8d3b9013fef.png

一元三次方程的一般形式为:

e0c6ef8a072113b31af283e1f95296f1.png

所有系数同除a,再进行等价的代换可以得到

affcf4c5594a74f2220ddc95c730f995.png

如果我们此时令y=x-a/3,目的是为了消去原方程的二次项,我们不用完全展开

8c27bc0a315ef704c37fed3b0ab013dc.png

方程仅有的两个二次项是可以被消去的

所以我们要解三次方程,其实只需要解一个形如:

985ae0166869c4ee36fc3b8d4f5df57a.png

而这个式子和完全立方公式又有着密切的关系

发现了没有,他们是完全等价的,我们令x=a+b

a8125323817d41d58d447a45f9f51e8a.png

可得

59b0c0f7fbb1d589f3198f4c98040039.png

下面的步骤和我们刚才解二次方程就有点类似了,我们尝试着构造a^3-b^3

21e74e1ed055955f87408064068e8808.png

然后我们联立a^3+b^3和a^3-b^3

fda7a2d299f361c91ec1ee6cfa90eaba.png

解得

a7175a8dabca2e0d695c767ed907580e.png

其中根号下的部分就是三次方程的判别式Δ

9d989f7dd60b604d0ba78d774b6dda30.png

然后我们带回到原来的拆解式x=a+b就可以得到卡尔丹诺公式:

488118c04e392147a19543e6e8fa3c91.png

然而是塔尔塔利亚告诉卡尔丹诺的233333,就好像我写的东西都是妈咪叔告诉我的

3a6097feaff3067327f77adc6a9485ef.png

当然根据代数学基本定理我们知道几次方程就有几个复数根,我们现在只得到一个还差两个

其实是因为我们在开ab三次根号的时候漏掉了,a^3=1,则a除了可能是1,还可能是w和w^2,这个在复数域上画张图就能解释清楚

d079667a22734b3bd343a78e4d508344.png

综上可得

97b71114658bc75d012f41e1d2672257.png

硬核一点就是这样的

c5776eb9e9a998b88eb3bc64b6628ea0.png
来源:https://zh.wikipedia.org/wiki/三次方程
维基百科:三次方程​zh.wikipedia.org

53f88a79ed54b746909a4d9e5eeb1811.png

前面的方法和三次方程如出一辙,主要就是把最高次项系数变成1,并消去次高项

18cf5aae17627d478100fa62db852aa2.png

等价于解这两个二次方程

d6f6b34e0c55cfd35b358bdf373c9b65.png

仔细运算可以得到

fd19804e2a2ae72adfd228f2c9dce531.png

现在我们需要把klmn都用pqr进行表示

212c47de42f770200d7b32d339bb5a75.png

由②③可得,注意k≠0,等于0的话这个四次方程是非常好解的。

02ce95672aee24774acc75b11ab5d900.png

带回到④,(如果和我一样你进行过计算的话,就知道①我们之前用过多次了)

6e31760ddb3eb7f4b1e6b422dfb7361b.png

继续展开,并整理成关于k的方程可得:

86ab56438b293dc91b1582277f93d6a4.png

这是一个关于k的一元六次方程,也就是关于k^2的一元三次方程

三次方程可解,k^2可解,k可解,n和l可解,同时m可解。

好了,这篇文章就到这里,非常感谢妈咪叔的视频让我终于有动力完成全文,去仔细地研究三次和四次方程的解法。

学习并不是一个轻而易举的过程,看过不代表学会,绝知此事仍要躬行。

84b044721f158e5538ed2945e7221526.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值