1. 金融时间序列
1.1什么是时间序列
金融时间序列是属于时间序列数据的一种,他们就是有很强的时间性,数据前后具有很强的依赖性,切无法调整顺序,一般都是二维数据。 时间序列由于具有很强的序列行,而且数据前后一般存在依赖,周期等关系,所以可以通过统计学的知识根据现有数据对未来数据进行预测。 
1.2
金融时间序列的特性
(1)Leptokurtic尖峰厚尾 金融时间序列相比标准正态分布来说,具有尖峰厚尾的特性。 这部分会在后面讲到偏度和峰度的时候具体谈。
(2)Heteroskedasitc 异方差 这要先介绍一个叫“同方差”的术语。同方差指的是:不管时间如何变化,金融资产回报率的方差是不变的,也就还是那一个方差(所谓的方差分布独立于时间)。 
(3)Volatility
clustering 波动集聚性 从更小的尺度上观察发现序列波动呈现浪潮似得的形状,有波峰有波谷。 
(4)Leverage
effects 杠杆效应 好的消息总是没有坏的消息对市场的影响大。 其实,也就是因为leverage
effect的出现,才让ARCH模型要加入方差方程从而调整成了新的更powerful的GARCH模型以及更更高级的TGRACH以及EGARCH模型。
2.
金融时间序列统计特性
2.1
金融时间序列基础概念
2.1.1
金融资产收益率
Pt:t时刻的资产价格 Rt : t-1到t时刻的资产收益率
(1)简单收益率 单期简单收益率 
多期简单收益率 
多期收益率–>单期收益率 
多期收益率<–单期收益率 
(2)对数收益率 单期对数收益率 
pt=ln(Pt)"
role="presentation" style="box-sizing: border-box; outline: 0px;
display: inline; line-height: normal; text-align: left;
word-spacing: normal; word-wrap: normal; white-space: nowrap;
float: none; direction: ltr; max-width: none; max-height: none;
min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin:
0px; word-break: break-all; position:
relative;">pt=ln(Pt)pt=ln(Pt)
多期对数收益率 
(3)简单收益率和对数收益率 相比于简单收益率,对数收益率具有更加优良的统计特性,而且具有累计可加性。
2.2 统计特性
金融指标
统计标量
收益率
期望
风险
方差
可以说上面的理论是金融数量化分析的基础。
学习金融时间序列分析你还需要简单的统计学知识,比如分布函数,条件分布,联合分布。 

一阶矩:均值 二阶矩:方差 三阶矩:偏度 四阶矩:峰度
偏度:用于描述概率分布函数的对称性. 一般而言,金融资产收益率分布函数通常是右偏,因为一般情况下,市场收益率大于零。 
峰度:用于描述概率分布厚尾性。 厚尾性表明:该小概率事件容易发生。 

各个统计标量的估计: Data:{x1,···,xT} 
3. 参考文献
[1] 金融时间序列的四大特点 [2] MIT, Analysis of Financial Time
Series [3] 金融时间序列分析, Ruey S. Tray [4] 金融时间序列分析, 炼数成金
本文介绍了金融时间序列的基本概念和特性,包括尖峰厚尾、异方差、波动集聚性和杠杆效应。此外,还探讨了金融资产收益率的统计特性,如期望、方差、偏度和峰度,并强调了对数收益率在统计分析中的优势。金融时间序列分析是预测未来市场走势和风险管理的重要工具,涉及到统计学和金融模型如GARCH。

被折叠的 条评论
为什么被折叠?



