java可视化压缩_web可视化技术发展(1/6)

06aacd672849283448516627cd1e50f0.png

EverCraft一直在关注Web可视化技术的发展,在本系列文章里,小编将对国外一篇感觉很不错的综述性文章进行翻译,供这一领域的爱好者相互学习。这篇paper的信息为:“Mwalongo, F., et al., State-of-the-Art Report in Web-based Visualization. COMPUTER GRAPHICS FORUM, 2016. 35(3): p. 553-575. ”。感兴趣的小伙伴可以直接阅读原文献哈。(关注公众号EverCraft,回复“可视化”可获得原文)


远程可视化技术研究在海量医学数据、社交媒体数据或商业数据的可视化应用方面发挥着重要作用。这一需求源自用户终端计算能力的相对不足,比如手机处理能力不够,或者需要可视化的数据量太大。同时,由于传输带宽、延迟时间或者本地存储的限制,即使终端计算能力足够,这些海量的数据也难以实现高效传输。况且,在某些特殊场景下,一些敏感数据或者保密原始数据也并不适合直接向其他人开放。鉴于带宽、网络延迟等问题成为远程可视化的主要瓶颈,过去有大量研究和技术集中于解决这些问题。

尽管过去的研究成绩斐然,但数据量的不断增长和硬件设备的持续发展,使得远程可视化依然一直是研究的热点。由于天然的跨平台属性、以及成为未来协作平台的潜力,基于Web的可视化技术在该领域表现得尤为突出。

基于Web的方式使得一套可视化工具代码可以跨平台执行,这不仅让团队间的协作和分享更加便捷,并且降低了程序的维护复杂度,使得可视化领域的研究者和其他应用行业领域的研究者可以更专注于研究各自领域的核心问题。更进一步,基于Web的方式使得各应用领域的研究者可以随时获得最新的数据(只需要刷新页面即可)。同时,这种可视化研究者和行业应用研究者的协同工作方式,更有助于促进可视化研究成果的落地应用。

基于Web的可视化方案的另一个明显优势则是用户的便利性。用户(比如各行业应用的研究者)只需要通过网页浏览器,而不需要安装其他任何软件。因浏览器基本上在所有的计算终端均可直接使用,用户可随时随地开展工作(只要能上网,同时其具有数据的访问权限)。因为大多的可视化解决方案均是基于GPU的,着色器代码(本质是文本类文件)可与数据同时存在服务器供多客户端使用。这种可视化方案在某些数据不便分享的场景尤具吸引力。比如用户完全可以把数据存在本地终端,通过从服务器获取着色器代码,以实现数据的可视化,而不需要将数据上传到服务器(尤其是当多用户同时在上传数据时,这将带来极大的传输成本)。显然,对于比较大的数据量而言,传输可执行的代码远比传输数据要来得简单。

早期的Web可视化技术主要利用VRML和浏览器的Java插件,或者服务端的渲染实现,以及其他集成Java、JavaScript和Flash的方式。因带宽和网络延迟的限制,这些方式的体验都比较一般。由于浏览器技术的限制,服务端渲染的方式在当时更受欢迎。

但是,近些年Web技术发展迅速,目前Web可视化技术趋势已是通过WebGL和HTML5以充分利用用户终端的GPU加速渲染,而不需要浏览器加装任何的插件。基于GPU的可视化技术将计算渲染的负担由GPU承担,以改善渲染和交互的体验(否则使用javaSript在CPU上是不可行的)。这种通过用户终端进行渲染计算的方式优点在于其避免了网络延迟带来的影响,因为其不再需要反复与服务端交换交互操作参数和渲染生成的图片。当然,虽然有了上述的进步,将部分渲染计算分流到服务端渲染或预处理依然有助于浏览器端对于复杂场景的渲染。


该系列文章将对Web可视化技术进行综述,包括讨论最新的渲染技术、底层技术、以及优化算法策略等。这些通用技术共同构建了Web可视化应用的基础,因此,本系列文章不仅关注高速、GPU加速的用户终端渲染技术,同样关注服务端渲染技术(比如网格化计算),以及如流媒体、数据压缩等降低带宽需求的技术。同时,我们讨论了各应用领域的一些Web可视化的应用程序,分析这些应用和前文所述基础技术的相关性,并进行了分类。最后,文章讨论了一些特殊的应用场景,并给出了一些落地的应用方案。

根据小编的翻译水平和时间,本系列文章基本将按如下顺序连载(某些部分内容比较多,可能又会分为子系列,大家可以随时回本页面查看目录更新):

  • 系列1:概述(也就是本文了)
  • 系列2:作为Web服务的可视化
  • 系列3:基于网格计算的可视化&基于云计算的可视化
  • 系列4:浏览器的本地渲染
  • 系列5:数据编码与传输技术&基于Web可视化的应用
  • 系列6:Web可视化技术的分类&总结

EverCraft.co(关注公众号EverCraft,获取更多信息)

我们相信。每个人都具有创新的力量,每一份对未来的设计都将让生活变得更有趣。

417fe81e8aacc3d72a0759077d38cf90.png
1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
应用背景为变电站电力巡检,基于YOLO v4算法模型对常见电力巡检目标进行检测,并充分利用Ascend310提供的DVPP等硬件支持能力来完成流媒体的传输、处理等任务,并对系统性能做出一定的优化。.zip深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值