正向最大匹配法
分词目标:
在词典中进行扫描,尽可能地选择与词典中最长单词匹配的词作为目标分词,然后进行下一次匹配。
算法流程:
假设词典中最长的单词为 5 个(MAX_LENGTH),那么最大匹配的起始子串字数也为 5 个
(1)扫描字典,测试读入的子串是否在字典中
(2)如果存在,则从输入中删除掉该子串,重新按照规则取子串,重复(1)
(3)如果不存在于字典中,则从右向左减少子串长度,重复(1)
分词实例:
比如说输入 “北京大学生前来应聘”,
第一轮:取子串 “北京大学生”,正向取词,如果匹配失败,每次去掉匹配字段最后面的一个字
“北京大学生”,扫描 5 字词典,没有匹配,子串长度减 1 变为“北京大学”
“北京大学”,扫描 4 字词典,有匹配,输出“北京大学”,输入变为“生前来应聘”
第二轮:取子串“生前来应聘
“生前来应聘”,扫描 5 字词典,没有匹配,子串长度减 1 变为“生前来应”
“生前来应”,扫描 4 字词典,没有匹配,子串长度减 1 变为“生前来”
“生前来”,扫描 3 字词典,没有匹配,子串长度减 1 变为“生前”
“生前”,扫描 2 字词典,有匹配,输出“生前”,输入变为“来应聘””
第三轮:取子串“来应聘”
“来应聘”,扫描 3 字词典,没有匹配,子串长度减 1 变为“来应”
“来应”,扫描 2 字词典,没有匹配,子串长度减 1 变为“来”
颗粒度最小为 1,直接输出“来”,输入变为“应聘”
第四轮:取子串“应聘
“应聘”,扫描 2 字词典,有匹配,输出“应聘”,输入变为“”
输入长度为0,扫描终止
正向匹配法最终的切分结果为:”北京大学 / 生前 / 来 / 应聘”
dictionary = ["北京大学","生前","前来","来","北京","大学","应聘","大学生"]
MAX_LENGTH = 5
def leftMax(inputstr):
results = list()
while( len(inputstr) > 0 ):
subSeq = "";
# 每次取小于或者等于最大字典长度的子串进行匹配
if len(inputstr) < MAX_LENGTH :
subSeq = inputstr
else:
subSeq = inputstr[:MAX_LENGTH]
while len(subSeq) > 0 :
# 如果字典中含有该子串或者子串颗粒度为1,子串匹配成功
if (subSeq in dictionary) or (len(subSeq) == 1) :
results.append(subSeq)
# 输入中从前向后去掉已经匹配的子串
inputstr = inputstr[len(subSeq):]
# 退出循环,进行下一次匹配
break;
else:
# 去掉匹配字段最后面的一个字
subSeq = subSeq[:len(subSeq)-1]
return results;
leftMax("北京大学生前来应聘")
逆向最大匹配法
分词目标:
在词典中进行扫描,尽可能地选择与词典中最长单词匹配的词作为目标分词,然后进行下一次匹配。
在实践中,逆向最大匹配算法性能优于正向最大匹配算法。
算法流程
假设词典中最长的单词为 5 个(MAX_LENGTH),那么最大匹配的起始子串字数也为 5 个
(1)扫描字典,测试读入的子串是否在字典中
(2)如果存在,则从输入中删除掉该子串,重新按照规则取子串,重复(1)
(3)如果不存在于字典中,则从左向右减少子串长度,重复(1)
分词实例
比如说输入 “北京大学生前来应聘”,
第一轮:取子串 “生前来应聘”,逆向取词,如果匹配失败,每次去掉匹配字段最前面的一个字
“生前来应聘”,扫描 5 字词典,没有匹配,字串长度减 1 变为“前来应聘”
“前来应聘”,扫描 4 字词典,没有匹配,字串长度减 1 变为“来应聘”
“来应聘”,扫描 3 字词典,没有匹配,字串长度减 1 变为“应聘”
“应聘”,扫描 2 字词典,有匹配,输出“应聘”,输入变为“大学生前来”
第二轮:取子串“大学生前来”
“大学生前来”,扫描 5 字词典,没有匹配,字串长度减 1 变为“学生前来”
“学生前来”,扫描 4 字词典,没有匹配,字串长度减 1 变为“生前来”
“生前来”,扫描 3 字词典,没有匹配,字串长度减 1 变为“前来”
“前来”,扫描 2 字词典,有匹配,输出“前来”,输入变为“北京大学生”
第三轮:取子串“北京大学生”
“北京大学生”,扫描 5 字词典,没有匹配,字串长度减 1 变为“京大学生”
“京大学生”,扫描 4 字词典,没有匹配,字串长度减 1 变为“大学生”
“大学生”,扫描 3 字词典,有匹配,输出“大学生”,输入变为“北京”
第四轮:取子串“北京”
“北京”,扫描 2 字词典,有匹配,输出“北京”,输入变为“” 输入长度为0,扫描终止
dictionary = ["北京大学","生前","前来","来","北京","大学","应聘","大学生"]
MAX_LENGTH = 5
def rightMax(inputstr):
# 采用堆栈处理结果,后进先出
store = []
results = [];
i = 0
while( len(inputstr) > 0 ):
subSeq = ""
# 每次取小于或者等于最大字典长度的子串进行匹配
if len(inputstr) < MAX_LENGTH :
subSeq = inputstr
else:
subSeq = inputstr[len(inputstr)-MAX_LENGTH:]
while( len(subSeq) > 0 ) :
# 如果字典中含有该子串或者子串颗粒度为1,子串匹配成功
if (subSeq in dictionary) or (len(subSeq) == 1) :
store.append(subSeq)
# 输入中从后向前去掉已经匹配的子串
inputstr = inputstr[:len(inputstr) - len(subSeq)]
break;
else:
# 去掉匹配字段最前面的一个字
subSeq = subSeq[1:]
for _ in range(len(store)):
results.append(store.pop())
return results
rightMax("北京大学生前来应聘")
双向最大匹配法
分词目标
将正向最大匹配算法和逆向最大匹配算法进行比较,从而确定正确的分词方法。
算法流程:
比较正向最大匹配和逆向最大匹配结果
如果分词数量结果不同,那么取分词数量较少的那个
如果分词数量结果相同
分词结果相同,可以返回任何一个
分词结果不同,返回单字数比较少的那个
分词实例:
就上例来看,
正向匹配最终切分结果为:北京大学 / 生前 / 来 / 应聘,分词数量为 4,单字数为 1
逆向匹配最终切分结果为:”北京/ 大学生/ 前来 / 应聘,分词数量为 4,单字数为 0
返回单字数量少的匹配方式
逆向匹配单字数少,因此返回逆向匹配的结果。
双向最大匹配法实现如下:
def segment(inputstr):
fmm = leftMax(inputstr)
bmm = rightMax(inputstr)
print(fmm)
print(bmm)
# 如果分词的结果不同,返回长度较小的
if len(fmm) > len(bmm):
return bmm
elif len(fmm) < len(bmm):
return fmm
else :
# 如果分词的词数相同
fmmSingle = 0
bmmSingle = 0
isEqual = True
for i in range(len(bmm)):
if fmm[i] != bmm[i]:
isEqual = False
if len(fmm[i]) == 1:
fmmSingle =+ 1
if len(bmm[i]) == 1:
bmmSingle =+ 1
# 如果正向、逆向匹配结果完全相等,返回任意结果
if isEqual:
return fmm;
# 否则,返回单字数少的匹配方式
elif fmmSingle > bmmSingle:
return bmm;
else :
return fmm;
segment("北京大学生前来应聘")