python3.5安装tensorflow_Win10+Anaconda+python3.5+Tensorflow安装

尊重一下原著:https://blog.csdn.net/hejunqing14/article/details/76059603(蓝色部分实我根据我自己的来添加更改的)

因为自己的笔记本也有gpu,加上tensorflow 增加了windows的支持,所以打算装一个tf。打算装python版的tf, 首先当然是装python了。

安装anaconda(python 3.6)

anaconda自带了python,还有很多科学计算库,所以我使用anaconda。只想装python3的朋友也可以去官网下载python3自行安装。tf支持的python3必须在3.5以上,切记!

1. 从anaconda官网上下载anaconda3, 我选的是python 3.6的。因为3.6向下兼容3.5的。

2. 下载完成后双击安装包即可。

3. 路径什么的自己定就好。

4. 在安装快要开始的时候,会询问时候加入到path中,和是否选为IDE默认的python库,都勾上即可。如果不勾上第一个,那后续手动在path里加上 anaconda的路径。(下面图片是找来的3.5的)

.

SouthEast

5. 检测是否安装好,打开一个cmd窗口,输入python,应该如下,显示出anaconda的版本,然后进入python的命令行模式。没问题的话quit()退出即可。

Python 3.6.1 |Anaconda 4.4.0 (64-bit)| (default, May 11 2017, 13:25:24) [MSC v.1900 64 bit (AMD64)] on win32

Type "help", "copyright", "credits" or "license" for more information.

1

2

检查自己的gpu是否可以使用cuda

如果笔记本上的gpu支持cuda,那么使用gpu版本的tensorflow, 否则请安装cpu版的。

在[https://developer.nvidia.com/cuda-gpus]上查看自己的gpu型号是否在列表中。在的话,请跳到安装CUDA步骤, 否则:

1. 请到tensorflow官网,下载windows操作系统的cpu版本whl安装包

2. 打开cmd命令窗,到安装包所在的文件夹,输入命令 pip install tensorflow*.whl 安装。输入tensorflow的安装包的时候,按tab键会自动补全。安装时程序会自动安装依赖库,不需要在线。

3. 安装完成后,输入python, 然后import tensorflow,没有报错则安装完成。

安装CUDA

现在的tf版本是1.2, 使用的是CUDA 8.0和cudnn 5.1

1. 首先到NVIDIA官网下载CUDA,先选择GPU型号,进入另一个页面后, 然后选择 win10的操作系统和本地的exe,如下图:

SouthEast

2. 下载完成后,双击运行安装包即可,选择用户自定义安装,只安装CUDA,然后看Nvidia Driver, 如果当前的显卡驱动的版本比CUDA自带的显卡驱动版本低,则把显卡驱动也勾上。安装路径自己选,我的samples存在了自己的路径下,别的都默认路径。开始安装。

3. 安装完成后,打开cmd窗口,输入nvcc -V,查看CUDA是否正确安装。若正确安装,会出来下图:

SouthEast

如果电脑上有vs2010,2013,或2015的话,那么,可以解锁更高级的测试方法:

1.进入cuda samples保存的目录,就是安装时第一个路径。然后进去\1_Utilities\deviceQuery文件夹下,打开对应vs版本的sln,然后编译。

2.编译成功后,打开cmd窗口,到cuda samples保存的目录,进去\bin\win64\Debug目录下,运行deviceQuery.exe, 结果如果显示显卡的信息,像下图: Result=Pass,恭喜你成功了!

SouthEast

如果结果是这样的:

SouthEast

那么你需要打开独显。如果确认独显已经打开了,还是这样,那么就要在设备管理器里更新显卡驱动了。

安装cudnn

其实这个是一个压缩包,解压放到任何一个目录下就行,然后把你放的那个目录添加到Path 环境变量里。例如我放到了E:\ProgramData\cudnn

那么在path里添加E:\ProgramData\cudnn\bin 即可。

SouthEast

安装tf

从官网下载 windows系统的python3.6 的whl安装包,

打开cmd窗口,到安装包路径下,安装命令如下:(建议安装GPU版,因为GPU版安装好后CPU也能用,但根据自己的电脑是否有GPU来选择哈)

CPU版 : pip install --upgrade https://storage.googleapis.com/tensorflow/windows/cpu/tensorflow-0.12.0rc0-cp35-cp35m-win_amd64.whl

GPU版:pip install --upgrade https://storage.googleapis.com/tensorflow/windows/gpu/tensorflow_gpu-0.12.0rc0-cp35-cp35m-win_amd64.whl

安装完成后,输入python, 然后输入下面命令测试:

import tensorflow as tf

a = tf.random_normal((100, 100))

b = tf.random_normal((100, 500))

c = tf.matmul(a, b)

sess = tf.InteractiveSession()

sess.run(c)

1

2

3

4

5

6

7

如果中途的输出如下,说明已经检测到设备了,则cuda和tf都装好了(这点很重要,不然你都不知道是不是都安装上了)

SouthEast

撒花~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值