群同态基本定理证明_有限群的线性表示论: GTM 42 抄书笔记

本文是关于J.-P. Serre的《Linear Representations of Finite Groups》的抄书笔记,涵盖群同态基本定理、特征标理论、子群、群直积、诱导表示等内容。讨论了Artin定理和Brauer定理在群表示论中的应用,以及有理性问题在不同域上的表现。
摘要由CSDN通过智能技术生成

这篇是 J.-P. Serre 所著 Linear Representations of Finite Groups 的抄书笔记. 数学术语都是我自己翻译的, 很多网上找不到, 就猜了一个, 如有错误还请指正.


第一章 表示概论

是域,
. 群
-线性空间
上的
表示可由以下几种等价的方式表述: 群同态
;
-代数同态
;
是左
-模. 于是模论的术语和结论可照搬过来. 一些顾名思义的术语:
平凡表示, 正则表示, 子表示, 不可约表示, 表示的 直和, 张量积 (用自然同构
),
对偶表示 (用
).
表示诱导出外幂与对称幂上的表示, 详见习题 9.3.
定理 (Maschke). 设
是有限群, 则
是半单代数当且仅当
. (证明: 平均技巧用在投影或内积上.)

于是环论中关于半单代数及其上的模的结论均可用于群表示论 (具体见第六章). 例如 Schur 引理, 内容就不复述了, 注意

代数闭时得表示的自同态必为单位映射的常数倍 (取特征值).

第二章 特征标理论

下面只考虑有限群在

上的有限维表示. 记
,
. 在共轭类上取值相等的函数
称为
类函数. 由表示取迹得到的类函数称为 特征标. 我们建立表示与特征标间的一一对应. 设
的所有不可约表示的数据.

, 记
,
.
观察. 设
,
,
. (i)
可对角化, 其特征值均为单位根,
特征值之和. (ii)
,
. (iii) 表示的直和, 张量积, 对偶对应特征标的和, 积, 共轭. (iv)
, 任意
.

不可约表示

,
与线性映射
有矩阵表示
,
. 用平均技巧,
是同态, 展开再由 Schur 引理得: (i)
时,
; (ii)
时,
. 像 Maschke 定理的证明一样, 我们可以适当取内积和基使得
都是正交矩阵. 于是我们得到特征标的
Schur 正交关系:
由此推出一系列结果.
Schur 正交关系的另一推导: 我们有表示的同构
, 于是
, 两边取维数: 对任意表示
, 有
(考虑投影
; 有趣的是这也是正交关系的推论).

Schur 正交关系的推广:

任意表示

可写为
(由 Maschke), 其中
唯一. 于是
,
, 故
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值