k近邻算法python解读_python之k-近邻算法(sklearn版)

一,处理类别数据

上篇文章我们是利用KNN.py中的自编函数panduan在读取数据的过程中来实现的,而这种转变在sklearn中已经有轮子调用了

这里再补充一点:对于类别数据(对于特征值也是适用的),可以分为标称特征(nominal feature)和有序特征(ordinal feature).

对于我们这里的数据largeDoses,smallDoses,didntLike应该是对应着有序特征

#接下来将喜欢的类别中的三类转变为1,2,3

like_order = {"didntLike":1,"smallDoses":2,"largeDoses":3}

df['喜欢的类别'] = df['喜欢的类别'].map(like_order)

df['喜欢的类别'].drop_duplicates()

得到结果:

df['喜欢的类别'].drop_duplicates()

Out[8]:

0 largeDoses

1 smallDoses

2 didntLike

Name: 喜欢的类别, dtype: object

如果后续转变回来,可以定义一个逆映射字典

inv_like_order = {v:k for k,v in like_order.items()}

df['喜欢的类别'] = df['喜欢的类别'].map(inv_like_order)

df['喜欢的类别'].drop_duplicates()

得到结果:

Out[12]:

0 largeDoses

1 smallDoses

2 didntLike

Name: 喜欢的类别, dtype: object

如果在这里'喜欢的类别'本身不带有有序的含义的话,即largeDoses,smallDoses,didntLike三个类别没有序别之分,可以借用sklearn里的功能

#自己写

import numpy as np

like_not_order = {label:idx for idx,label in enumerate(np.unique(df['喜欢的类别']))}

df['喜欢的类别'] = df['喜欢的类别'].map(like_not_order)

df['喜欢的类别'].drop_duplicates()

Out[17]:

0 1

1 2

2 0

Name: 喜欢的类别, dtype: int64

#sklearn

from sklearn.preprocessing import LabelEncoder

class_le = LabelEncoder()

y = class_le.fit_transform(df['喜欢的类别'].values)

np.unique(y)

Out[22]: array([0, 1, 2], dtype=int64)

##转变回原来的类别

class_le.inverse_transform(y)

可以看到借用sklearn是比较方便的

但是。。。。。但是。。。。以上的0,1,2在算法看来依然是有顺序的,所以我们可以利用独热编码(one-hot encoding),即创建一个新的虚拟特征(dummy feature)

from sklearn.preprocessing import OneHotEncoder

#categorical_features参数指定我们对数据集中第几列进行独热编码

ohe = OneHotEncoder(categorical_features=[3])

ohe.fit_transform(df).toarray()

也可以利用pandas里的功能

pd.get_dummies(df) #只对类别性数据有用,会忽略数值型数据

————————————————————————————————————

二、将特征值缩放到相同区间

特征缩放(feature scaling)对于除了决策树和随机森林两个算法没用以外,对其他算法和优化算法来讲都是必不可少的

2.1 归一化(将值缩放到0-1之间)

即上篇文章所涉及到的

image.png

from sklearn.preprocessing import MinMaxScaler

mms = MinMaxScaler()

y = mms.fit_transform(df.iloc[:,0:3])

2.2 标准化(将值缩放到均值为0,方差为1,即标准正态分布)

对于线性模型来讲,标准化更加好,一是符合线性模型对权重的处理,二是保留了异常值的信息

image.png

from sklearn.preprocessing import StandardScaler

stds = StandardScaler()

y = stds.fit_transform(df.iloc[:,0:3])

———————————————————————————————————

三、将数据集划分为训练集和测试集

上篇文章对于此类问题的处理见datingClassTest函数

from sklearn.model_selection import train_test_split

X_train,X_test,y_train,y_test = train_test_split(df.iloc[:,0:3],df.iloc[:,3], \

test_size=0.1,random_state=0)

image.png

四、k-近邻算法

K-近邻算法被称之为惰性算法,和其他机器学习算法不一样,因为他仅仅是对训练数据集有记忆功能,而不是从训练集中通过学习得到一个判别函数,即不需要训练,看过上篇文章的小伙伴应该会有体会。缺点是计算复杂度会随着样本数量的增长而呈线性增长,除非数据集中特征数量有限

image.png

from sklearn.model_selection import train_test_split

from sklearn.neighbors import KNeighborsClassifier

from sklearn.preprocessing import MinMaxScaler

like_order = {"didntLike":1,"smallDoses":2,"largeDoses":3}

df['喜欢的类别'] = df['喜欢的类别'].map(like_order)

X_train,X_test,y_train,y_test = train_test_split(df.iloc[:,0:3],df.iloc[:,3], \

test_size=0.1,random_state=0)

#n_neighbors代表近邻数,p=2代表欧式距离,p=1代表曼哈顿距离

#metric='minkowski'代表闵可夫斯基距离,他是对欧氏距离和曼哈顿距离的一种泛化

knn = KNeighborsClassifier(n_neighbors=5,p=2,metric='minkowski')

mms = MinMaxScaler()

X_train_std = mms.fit_transform(X_train)

knn.fit(X_train_std,y_train)

knn.predict(mms.fit_transform(X_test))

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值