动态规划c语言最大子数组之和,动态规划 连续子数组的最大和

题目

输入一个整型数组,数组里有正数也有负数。数组中的一个或连续多个整数组成一个子数组。求所有子数组的和的最大值。

要求时间复杂度为O(n)。

示例1:

输入: nums = [-2,1,-3,4,-1,2,1,-5,4]

输出: 6

解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。

提示:

1 <= arr.length <= 10^5

-100 <= arr[i] <= 100

解法一

1.

max存储最大值,cur存储nums[i]和这一阶段子序列的值,former存储当前还未进入计算计算的也就是上一个子序列的值

class Solution {

public int maxSubArray(int[] nums) {

int max=nums[0],cur=0,former=0;

for(int num:nums){

cur=num;

if(former>0) cur+=former;

if(cur>max) max=cur;

former=cur;

}

return max;

}

}

解法二

利用max来代替if判断>0

class Solution {

public int maxSubArray(int[] nums) {

int res = nums[0];

for(int i = 1; i < nums.length; i++) {

nums[i] += Math.max(nums[i - 1], 0);

res = Math.max(res, nums[i]);

}

return res;

}

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值