超分辨率python_NTIRE 2018超分辨率挑战优胜方案

Wide Activation for Efficient and Accurate Image Super-Resolution

Run

Requirements:

Install PyTorch (tested on release 0.4.0 and 0.4.1).

Clone EDSR-Pytorch as backbone training framework.

Training and Validation:

Copy wdsr_a.py, wdsr_b.py into EDSR-PyTorch/src/model/.

Modify EDSR-PyTorch/src/option.py and EDSR-PyTorch/src/demo.sh to support --n_feats, --block_feats option.

Launch training with EDSR-Pytorch as backbone training framework.

Overall Performance

Network

Parameters

DIV2K (val) PSNR

EDSR Baseline

1,372,318

34.61

WDSR Baseline

1,190,100

34.77

We measured PSNR using DIV2K 0801 ~ 0900 (trained on 0000 ~ 0800) on RGB channels without self-ensemble which is identical to EDSR baseline model settings. Both baseline models have 16 residual blocks.

More results:

Number of Residual Blocks

1

3

SR Network

EDSR

WDSR-A

WDSR-B

EDSR

WDSR-A

WDSR-B

Parameters

2.6M

0.8M

0.8M

4.1M

2.3M

2.3M

DIV2K (val) PSNR

33.210

33.323

33.434

34.043

34.163

34.205

Number of Residual Blocks

5

8

SR Network

EDSR

WDSR-A

WDSR-B

EDSR

WDSR-A

WDSR-B

Parameters

5.6M

3.7M

3.7M

7.8M

6.0M

6.0M

DIV2K (val) PSNR

34.284

34.388

34.409

34.457

34.541

34.536

Comparisons of EDSR and our proposed WDSR-A, WDSR-B for image bicubic x2 super-resolution on DIV2K dataset.

WDSR Network Architecture

Left: vanilla residual block in EDSR. Middle: wide activation. Right: wider activation with linear low-rank convolution. The proposed wide activation WDSR-A, WDSR-B have similar merits with MobileNet V2 but different architectures and much better PSNR.

Weight Normalization vs. Batch Normalization and No Normalization

Training loss and validation PSNR with weight normalization, batch normalization or no normalization. Training with weight normalization has faster convergence and better accuracy.

Other Implementations

Citing

Please consider cite WDSR for image super-resolution and compression if you find it helpful.

@article{yu2018wide,

title={Wide Activation for Efficient and Accurate Image Super-Resolution},

author={Yu, Jiahui and Fan, Yuchen and Yang, Jianchao and Xu, Ning and Wang, Xinchao and Huang, Thomas S},

journal={arXiv preprint arXiv:1808.08718},

year={2018}

}

@inproceedings{fan2018wide,

title={Wide-activated Deep Residual Networks based Restoration for BPG-compressed Images},

author={Fan, Yuchen and Yu, Jiahui and Huang, Thomas S},

booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops},

pages={2621--2624},

year={2018}

}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
超分辨率领域,有几种常用的方法和理论基础。其中一种方法是插值方法,它通过对低分辨率图像进行插值来得到高分辨率图像。另一种方法是基于稀疏表示(字典学习)的方法,它通过学习低分辨率图像与高分辨率图像之间的稀疏表示关系来进行超分辨率复原。还有一种方法是基于局部嵌入(Neighbor Embedding)的方法,它利用低分辨率图像中的局部信息来进行超分辨率复原。此外,还有Example-Based的方法,它通过学习一组训练样本来进行超分辨率复原。 在超分辨率领域的理论基础方面,有一些重要的研究现状。一篇论文《VDSR Accurate Image Super-Resolution Using Very Deep Convolutional Networks, CVPR2016》提出了全局残差引入SR的方法,通过学习高分辨率图像和低分辨率图像之间的高频部分残差来进行超分辨率复原。这种残差网络结构的思想在后来的深度学习超分辨率方法中产生了深远影响。另一篇论文《SRGAN(SRResNet) Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network, CVPR2017》将生成对抗网络应用于超分辨率复原问题,利用感知损失和对抗损失来提升恢复图像的真实感。还有一篇冠军方案《EDSR Enhanced Deep Residual Networks for Single Image Super-Resolution, CVPR2017》在NTIRE2017超分辨率挑战赛上获得了冠军,该方案通过去除多余的模块,使用增强的ResNet结构和L1损失函数来提升结果质量。 这些方法和理论基础提供了超分辨率领域的基础知识,并为超分辨率复原技术的研究和应用提供了重要的参考。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值