H G W S哪一个不是状态函数_复变函数学习笔记(13)——单位圆盘上的自同构群(用了近世代数)...

参考资料:Stein复分析第8章的Problems4

本节我们证明如下定理:

(庆祝一下首次做出Stein复分析的Problems题目!!!!)

首先我们回顾一下笔记(10)的内容.

fjddy:复变函数学习笔记(10)——共形映射、单叶解析函数​zhuanlan.zhihu.com

下面为方便起见, 记单位圆盘为

单位圆盘上的自同构映射是
命题8.2.3

在这个命题里我们顺便说明了

定理8.2.4

回顾完成,我们进入正题!

定义1 形如
且满足如下条件的矩阵组成的集合记为

这里
换句话说, 对任意的
定理1

证明:

注意到
这里
表示W的共轭转置, 由于
解方程即可. QED

下面记

表示二阶循环群, 而
是个商群, 则我们可以证
研究商群的手段可以采用近世代数里面的“同态基本定理”. 那我们就借此机会回顾一下近视代数的相关内容吧!

有关循环群、商群、正规子群的内容就不在此回顾了, 可以翻一下书看看, 但还是有必要再复习一下群的定义:

定义2 [群]若G关于运算
满足结合律, 且
且G中至少有一个左单位元, 且G中每个元素都有一个左逆元, 则称G是一个
. 命题2
关于矩阵乘法运算构成群.

证明:根据矩阵乘法的性质, 容易验证

下面验证

关于矩阵乘法运算封闭: 记

满足

所以

有左单位元
对于矩阵
由于
则X必定有逆矩阵, 它就是X的左逆元. 综上,
是个群. QED
命题3
关于函数的复合运算构成群.

证明:首先它是个半群容易验证(简单运算即可)而我们在前面一节已经验证了恒等映射

就是单位元. 另外也已经验证了
所以对于

所以

有左逆元
QED

最后, 我们再作如下观察(这些观察还是花了我不少时间想出来的)

定理4
时,

证明:留给高中生做课后习题吧. QED

定理5

证明:事实上, 有如下观察: 对于任意的

注意这里

容易验证. 因此
QED

下面我们就可以用同态基本定理来证明我们所要的命题了. 回顾一下相关定义.

定义3 [同态与同构]设G,H是两个群,
是个映射, 如果
则说
是G到H的一个
同态(homomorphism),
记这个映射的值域
同态像(image),
同态核(kernel),
是个一一映射, 则称G与H通过同构映射
同构(isomorphism), 记为

终于,我们在这里引入同态基本定理:

定理6 [同态基本定理]
是个同态, 则

证明:不是我们这里的重点, 略. QED

定理7

证明:根据前面的定理,

所以只需证
构建映射

下面验证

是个同态: 对于

根据前面某个定理的计算, 我们有

另外我们有

所以

是同态.

最后我们只需验证

G的单位元即

从而
考虑到
所以
所以

根据同态基本定理,

QED

注1:σ不是单射,根据Ker(σ)有两个值立得,所以σ不可能是单射. 事实上ψ_(b/ā)与ψ_((-b)/(-ā))都映为同一个像.(一开始我以为σ是单射,感谢 @风雨阑珊 的提醒,这也暴露了我数理基础薄弱..)

注2: 根据我们在前面证过的定理, 可以立即推出上半平面的情况:

其中

YES!!!!!!!!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值